Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 525 Accesses

Abstract

Quantum information science is the study of the information processing that may be accomplished by quantum mechanical systems by using all the quantum properties of a physical information carrier. Quantum information science has two main goals: one is the realization of a universal quantum computer, which can help us perform tasks as a classical computer does. The other goal is to realize quantum communication and quantum cryptography networks. Quantum communication can be used to transfer quantum states between remote users, and by quantum cryptography, two legal users can communicate with each other in a secure way. China launched the first-ever quantum communication satellite into space in 2016, and achieved several important advances such as successfully creating and sending entangled photons from space to earth-based ground stations [61]. Quantum memories are indispensable to realize both goals of Quantum information science. In quantum memory, a quantum state such as a single photon, entanglement, or squeezed state of a quantum information carrier is recorded faithfully and recalled on demand. Before introducing the main experimental results on quantum memory, we introduce a brief description of background on quantum information, and quantum memory. Some important parameters of quantum memory, including fidelity, efficiency, bandwidth and capacity etc. are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afzelius, Mikael, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. 2009. Multimode quantum memory based on atomic frequency combs. Physical Review A 79 (5): 052329.

    Article  ADS  Google Scholar 

  2. Afzelius, Mikael, Thierry Chaneliere, Rufus L. Cone, Stefan Kröll, Sergey A. Moiseev, Matthew Sellars, et al. 2010. Photon-echo quantum memory in solid state systems. Laser & Photonics Reviews 4 (2): 244–267.

    Google Scholar 

  3. Alexander, A.L., J.J. Longdell, M.J. Sellars, and N.B. Manson. 2006. Photon echoes produced by switching electric fields. Physical Review Letters 96 (4): 043602.

    Article  ADS  Google Scholar 

  4. Allen, Les, Marco W Beijersbergen, RJC Spreeuw, and JP Woerdman. 1992. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Physical Review A 45 (11):8185.

    Google Scholar 

  5. Bechmann-Pasquinucci, H., and Wolfgang Tittel. 2000. Quantum cryptography using larger alphabets. Physical Review A 61 (6): 062308.

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, Charles H., and Gilles Brassard. 1984. Quantum cryptography: public key distribution and con tos5.

    Google Scholar 

  7. Briegel, H.-J., Wolfgang Dür, Juan I Cirac, and Peter Zoller. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters 81 (26): 5932.

    Google Scholar 

  8. Buchler, B.C., Mahdi Hosseini, Gabriel Hétet, BM Sparkes, and Ping Koy Lam. 2010. Precision spectral manipulation of optical pulses using a coherent photon echo memory. Optics Letters 35 (7): 1091–1093.

    Google Scholar 

  9. Bussières, Félix, Nicolas Sangouard, Mikael Afzelius, Hugues de Riedmatten, Christoph Simon, and Wolfgang Tittel. 2013. Prospective applications of optical quantum memories. Journal of Modern Optics 60 (18): 1519–1537.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chanelière, T., D.N. Matsukevich, S.D. Jenkins, S.Y. Lan, T.A. Kennedy, and A. Kuzmich. 2005. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438 (7069): 833.

    Article  ADS  Google Scholar 

  11. Clark, Jeremy B, Quentin Glorieux, and Paul D Lett. 2013. Spatially addressable readout and erasure of an image in a gradient echo memory. New Journal of Physics 15 (3): 035005.

    Google Scholar 

  12. Clausen, C., I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin. 2011. Quantum storage of photonic entanglement in a crystal. Nature 469 (7331): 508–511.

    Article  ADS  Google Scholar 

  13. De Riedmatten, Hugues, Mikael Afzelius, Matthias U Staudt, Christoph Simon, and Nicolas Gisin. 2008. A solid-state light-matter interface at the single-photon level. Nature 456 (7223): 773–777.

    Google Scholar 

  14. Ding, Dong-sheng, Wei Zhang, Shuai Shi, Zhi-yuan Zhou, Yan Li, Bao-sen Shi, and Guang-can Guo. 2016. High-dimensional entanglement between distant atomic-ensemble memories. Light: Science and Applications, 5(10): e16157.

    Google Scholar 

  15. Ding, Dong-Sheng, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Single-photon-level quantum image memory based on cold atomic ensembles. Nature Communications 4.

    Google Scholar 

  16. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Yang Liu, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multimode image memory based on a cold atomic ensemble. Physical Review A 87 (1): 013835.

    Article  ADS  Google Scholar 

  17. Ding, Dong-Sheng, Wu Jing-Hui, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo. 2013. Multiple image storage and frequency conversion in a cold atomic ensemble. Physical Review A 87 (5): 053830.

    Article  ADS  Google Scholar 

  18. Ding, Dong-Sheng, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Jian-song Pan, Guo-Yong Xiang, Xi-Shi Wang, Yun-Kun Jiang, Bao-Sen Shi, and Guang-Can Guo. 2014. Toward high-dimensional-state quantum memory in a cold atomic ensemble. Physical Review A 90 (4): 042301.

    Article  ADS  Google Scholar 

  19. Ding, Dong-Sheng, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Bao-Sen Shi, and Guang-Can Guo. 2015. Raman quantum memory of photonic polarized entanglement. Nature Photonics 9 (5): 332–338.

    Article  ADS  Google Scholar 

  20. Ding, Dong-Sheng, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Guo-Yong Xiang, Xi-Shi Wang, Yun-Kun Jiang, Bao-Sen Shi, and Guang-Can Guo. 2015. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters 114 (5): 050502.

    Article  ADS  Google Scholar 

  21. Duan, L.M., M.D. Lukin, J.I. Cirac, and P. Zoller. 2001. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414 (6862): 413.

    Article  ADS  Google Scholar 

  22. Duncan, G., England, Kent AG Fisher, Jean-Philippe W MacLean, Philip J Bustard, Rune Lausten, Kevin J Resch, and Benjamin J Sussman. 2015. Storage and retrieval of thz-bandwidth single photons using a room-temperature diamond quantum memory. Physical Review Letters 114 (5): 053602.

    Google Scholar 

  23. England, D.G., P.J. Bustard, J. Nunn, R. Lausten, and B.J. Sussman. 2013. From photons to phonons and back: a thz optical memory in diamond. Physical Review Letters 111 (24): 243601.

    Article  ADS  Google Scholar 

  24. Erhan, Saglamyurek, Neil Sinclair, Jeongwan Jin, Joshua A Slater, Daniel Oblak, Félix Bussières, Mathew George, Raimund Ricken, Wolfgang Sohler, and Wolfgang Tittel. 2011. Broadband waveguide quantum memory for entangled photons. Nature 469 (7331): 512–515.

    Google Scholar 

  25. Fleischhauer, Michael, and Mikhail D Lukin. 2000. Dark-state polaritons in electromagnetically induced transparency. Physical Review Letters 84 (22): 5094.

    Google Scholar 

  26. Giovannetti, Vittorio, Seth Lloyd, and Lorenzo Maccone. 2011. Advances in quantum metrology. Nature Photonics 5 (4): 222–229.

    Article  ADS  Google Scholar 

  27. Glorieux, Quentin, Jeremy B Clark, Alberto M Marino, Zhifan Zhou, and Paul D Lett. 2012. Temporally multiplexed storage of images in a gradient echo memory. Optics Express 20 (11): 12350–12358.

    Google Scholar 

  28. Harris, Stephen E., and J.E. Field, and A ImamoÄŸlu. 1990. Nonlinear optical processes using electromagnetically induced transparency. Physical Review Letters 64 (10): 1107.

    Google Scholar 

  29. Heinze, G., A. Rudolf, F. Beil, and T. Halfmann. 2010. Storage of images in atomic coherences in a rare-earth-ion-doped solid. Physical Review A 81 (1): 011401.

    Article  ADS  Google Scholar 

  30. Heinze, Georg, Christian Hubrich, and Thomas Halfmann. 2013. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Physical Review Letters 111 (3): 033601.

    Article  ADS  Google Scholar 

  31. Higginbottom, Daniel B., Ben M Sparkes, Milos Rancic, Olivier Pinel, Mahdi Hosseini, Ping Koy Lam, and Ben C Buchler. 2012. Spatial-mode storage in a gradient-echo memory. Physical Review A 86 (2): 023801.

    Google Scholar 

  32. Hosseini, Mahdi, Ben M Sparkes, Geoff Campbell, Ping K Lam, and Ben C Buchler. 2011. High efficiency coherent optical memory with warm rubidium vapour. Nature Communications 2: 174.

    Google Scholar 

  33. Huang, Hao, Guodong Xie, Yan Yan, Nisar Ahmed, Yongxiong Ren, Yang Yue, Dvora Rogawski, Moshe J. Willner, Baris I. Erkmen, Kevin M. Birnbaum, et al. 2014. 100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters 39 (2): 197–200.

    Article  ADS  Google Scholar 

  34. Jinghui, Wu, Yang Liu, Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo. 2013. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms. Physical Review A 87 (1): 013845.

    Article  ADS  Google Scholar 

  35. Julsgaard, B., A. Kozhekin, and E.S. Polzik. 2001. Experimental long-lived entanglement of two macroscopic objects. Nature 413 (6854): 400–403.

    Article  ADS  Google Scholar 

  36. Julsgaard, B., J. Sherson, J.I. Cirac, J. Fiuràsek, and E.S. Polzik. 2004. Experimental demonstration of quantum memory for light. Nature 432 (7016): 482–486.

    Article  ADS  Google Scholar 

  37. Kaszlikowski, Dagomir, Piotr Gnaciński, Marek Żukowski, Wieslaw Miklaszewski, and Anton Zeilinger. 2000. Violations of local realism by two entangled n-dimensional systems are stronger than for two qubits. Physical Review Letters 85 (21): 4418.

    Article  ADS  Google Scholar 

  38. Kimble, H.J. 2008. The quantum internet. Nature 453: 19.

    Google Scholar 

  39. Knill, E., R. Laflamme, and Milburn G.J. A scheme for efficient quantum computation with linear optics. Nature 409 (8): 46–53.

    Google Scholar 

  40. Kozhekin, A.E., Klaus Mølmer, and E Polzik. 2000. Quantum memory for light. Physical Review A 62 (3): 033809.

    Google Scholar 

  41. Kraus, Barbara, W Tittel, N Gisin, Mattias Nilsson, Stefan Kröll, and JI Cirac.2006. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Physical Review A 73 (2): 020302.

    Google Scholar 

  42. Lucile, Veissier, Adrien Nicolas, Lambert Giner, and Dominik Maxein, A.S. Sheremet, Elisabeth Giacobino, and Julien Laurat. 2013. Reversible optical memory for twisted photons. Optics Letters 38 (5): 712–714.

    Google Scholar 

  43. Lukin, M.D. 2003. Colloquium: Trapping and manipulating photon states in atomic ensembles. Reviews of Modern Physics 75 (2): 457.

    Article  ADS  Google Scholar 

  44. Michelberger, P.S., T.F.M. Champion, M.R. Sprague, K.T. Kaczmarek, M. Barbieri, X.M. Jin, D.G. England, W.S. Kolthammer, D.J. Saunders, J. Nunn, et al. 2015. Interfacing ghz-bandwidth heralded single photons with a warm vapour raman memory. New Journal of Physics 17 (4): 043006.

    Article  ADS  Google Scholar 

  45. Moiseev, S.A., and Stefan Kröll. 2001. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition. Physical Review Letters 87 (17): 173601.

    Google Scholar 

  46. Moretti, D., D. Felinto, and J.W.R. Tabosa. 2009. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Physical Review A 79 (2): 023825.

    Article  ADS  Google Scholar 

  47. Nicolas, A., L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat. 2014. A quantum memory for orbital angular momentum photonic qubits. Nature Photonics 8 (3): 234–238.

    Article  ADS  Google Scholar 

  48. Nunn, J., I.A. Walmsley, M.G. Raymer, K. Surmacz, F.C. Waldermann, Z. Wang, and D. Jaksch. 2007. Mapping broadband single-photon wave packets into an atomic memory. Physical Review A 75 (1): 011401.

    Article  ADS  Google Scholar 

  49. Philip J, Bustarrd, Rune Lausten, Duncan G England, and Benjamin J Sussman. 2013. Toward quantum processing in molecules: A thz-bandwidth coherent memory for light. Physical Review Letters 111 (8): 083901.

    Google Scholar 

  50. Praveen, K., Vudyasetu, Ryan M Camacho, and John C Howell. 2008. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Physical Review Letters 100 (12): 123903.

    Google Scholar 

  51. Pugatch, Rami, Moshe Shuker, Ofer Firstenberg, Amiram Ron, and Nir Davidson. 2007. Topological stability of stored optical vortices. Physical Review Letters 98 (20): 203601.

    Article  ADS  Google Scholar 

  52. Reim, K.F., J. Nunn, V.O. Lorenz, B.J. Sussman, K.C. Lee, N.K. Langford, D. Jaksch, and I.A. Walmsley. 2010. Towards high-speed optical quantum memories. Nature Photonics 4 (4): 218–221.

    Article  ADS  Google Scholar 

  53. Reim, K.F., P. Michelberger, K.C. Lee, J. Nunn, N.K. Langford, and I.A. Walmsley. 2011. Single-photon-level quantum memory at room temperature. Physical Review Letters 107 (5): 053603.

    Article  ADS  Google Scholar 

  54. Saglamyurek, Erhan, and Jeongwan Jin, Varun B Verma, Matthew D Shaw, Francesco Marsili, Sae Woo Nam, Daniel Oblak, and Wolfgang Tittel. 2015. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nature Photonics 9 (2): 83–87.

    Google Scholar 

  55. Sangouard, Nicolas, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. 2011. Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics 83 (1): 33.

    Article  ADS  Google Scholar 

  56. Shuker, M., O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson. 2008. Storing images in warm atomic vapor. Physical Review Letters 100 (22): 223601.

    Article  ADS  Google Scholar 

  57. Sokolov, I.V., M.I. Kolobov, A. Gatti, and L.A. Lugiato. 2001. Quantum holographic teleportation. Optics Communications 193 (1): 175–180.

    Article  ADS  Google Scholar 

  58. Tordrup, Karl, Antonio Negretti, and Klaus Mølmer. 2008. Holographic quantum computing. Physical Review Letters 101 (4): 040501.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Vértesi, Tamás, Stefano Pironio, and Nicolas Brunner. 2010. Closing the detection loophole in bell experiments using qudits. Physical Review Letters 104 (6): 060401.

    Article  Google Scholar 

  60. Wang, Jian, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur, et al. 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6 (7): 488–496.

    Article  ADS  Google Scholar 

  61. Yin, Juan, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, et al. 2017. Satellite-based entanglement distribution over 1200 kilometers. Science 356 (6343): 1140–1144.

    Article  Google Scholar 

  62. Yu Golubeva, T., Yu M Golubev, IV Sokolov, and MI Kolobov. 2006. Quantum parallel dense coding of optical images. Journal of Modern Optics 53 (5–6): 699–711.

    Google Scholar 

  63. Zhongxiao, Xu, Wu Yuelong, Long Tian, Lirong Chen, Zhiying Zhang, Zhihui Yan, Shujing Li, Hai Wang, Changde Xie, and Kunchi Peng. 2013. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy. Physical Review Letters 111 (24): 240503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, DS. (2018). Introduction. In: Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7476-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7476-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7475-2

  • Online ISBN: 978-981-10-7476-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics