Skip to main content

A Dynamic LES Model for Turbulent Reactive Flow with Parallel Adaptive Finite Elements

  • Chapter
  • First Online:
Energy for Propulsion

Part of the book series: Green Energy and Technology ((GREEN))

  • 926 Accesses

Abstract

An adaptive finite element method (FEM) is used for the solution of turbulent reactive flows in 3-D utilizing parallel methods for fluid dynamic and combustion modeling associated with engines. A dynamic LES method permits transition from laminar to turbulent flow without the assumptions usually required for turbulent sublayers near wall area. This capability is ideal for engine configurations where there is no equilibrium in the turbulent wall layers and the flow is not always turbulent and often in transition. The developed adaptive FEM flow solver uses “h” adaptation to provide for grid refinement. The FEM solver has been optimized for parallel processing employing the message passing interface (MPI) for clusters and high-performance computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

~:

Designates a Favre-averaged variable

–:

Designates a grid-filtered variable

c:

Sound speed (m/s)

\( C_{p} \) :

Specific heat capacity at constant P (J/kg.K)

\( C_{vm} \) :

Vreman fixed SGS eddy viscosity coefficient

\( C_{DVMG} \) :

Vreman dynamic SGS eddy viscosity coefficient

Dj:

Diffusion coefficient of the jth species \( \left( {{\text{m}}^{ 2} / {\text{s}}} \right) \)

\( D_{k} \) :

Turbulent diffusion coefficient \( \left( {{\text{m}}^{ 2} / {\text{s}}} \right) \)

E:

Total internal energy (J/kg)

\( f_{k,j} \) :

Body forces \( \left( {{\text{N/m}}^{ 3} } \right) \)

\( f_{drop} \) :

Body forces related to particulate or droplets in flow \( \left( {{\text{N/m}}^{ 3} } \right) \)

\( H_{j} \) :

Enthalpy of species j (J)

\( H_{oj} \) :

Enthalpy of formation (J)

P:

Pressure (Pa)

Pr:

Molecular Prandtl number

\( { \Pr }_{\text{sgs}} \) :

SGS eddy Prandtl number

Pr DVMG :

Vreman dynamic SGS eddy Prandtl number

\( Q_{j} \) :

Subtest-scale heat flux vector

\( q_{i} \) :

Heat flux vector

Re:

Reynolds number

\( {\tilde{\text{S}}}_{\text{ij}} \) :

Strain rate tensor \( \left( {\frac{\text{N}}{{{\mathrm{m}}^{ 2} }},{\mathrm{kg/m}}\,{\text{s}}^{ 2} } \right) \)

Sc:

Schmidt number

Sct:

Subgrid-scale turbulent Schmidt number

\( T \) :

Temperature (K)

\( T_{ij} \) :

Subgrid test-scale stress tensor

\( t_{ij} \) :

Grid-scale (resolved scale) shear stress \( \left( {\frac{\text{N}}{{{\mathrm{m}}^{ 2} }},{\mathrm{kg/m}}\,{\text{s}}^{ 2} } \right) \)

\( u_{i} \) :

Velocity component (m/s)

\( \Upsilon _{j} f_{j} \) :

Body force term for the \( j{\text{th}} \) component

\( \dot{w}_{chem}^{j} \) :

Chemical reaction

\( \dot{w}_{spray}^{j} \) :

Spray evaporation

\( \partial {\text{t}} \) :

Discrete time step size (s)

\( \kappa \) :

Coefficient of thermal conductivity \( \left( {{\text{W}}/{\text{m K}}} \right) \)

\( \rho \) :

Density (kg/m3)

\( \Upsilon ^{j} \) :

Mass fraction (jth species) \( \left( {\frac{{\rho^{j} }}{\rho }} \right) \)

\( \tau_{ij} \) :

Subgrid-scale stress tensor

μ:

Fluid viscosity \( \left( {{\text{Pa s}}} \right) \)

\( \upmu_{\text{sgs}} \) :

Turbulent eddy viscosity

References

  1. A.A. Amsden, P.J. O’Rourke, T.D. Butler, KIVA-II, a computer program for chemically reactive flows with sprays. Los Alamos, N.M.: Los Alamos National Laboratory Scientific Report, LA-11560-MS (1989)

    Google Scholar 

  2. D.C. Wilcox, Turbulence Modeling for CFD, 3rd edn. (DCW Industries Inc, La Canada CA, 2006)

    Google Scholar 

  3. P.E. Desjardins, S.H. Frankel, Two dimensional Large Eddy Simulation of soot formation in the near field of a strongly radiating non-premixed acetylene-air jet flame. Combust. Flame 119, 121–133 (1999)

    Article  Google Scholar 

  4. O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  Google Scholar 

  5. C. Angelberger, F. Egolfopoulos, D. Veynante, Large Eddy Simulations of chemical and acoustic effects on combustion instabilities. Flow Turbul. Combust. 65, 205–222 (2000)

    Article  Google Scholar 

  6. H. Pitsch, Duchamp, L. de la Geneste, Large Eddy simulation of premixed turbulent combustion using a level-set approach, in Proceedings of the Combustion Institute,vol. 29 (2002) (in press)

    Article  Google Scholar 

  7. C.D. Pierce, P. Moin, Progress-variable approach for large eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. G. E Lau, G.H. Yeoh, V. Timchenko, J.A. Reizes, Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity. Phys. Fluids (1994-present) 24, 094105 (2012)

    Article  Google Scholar 

  9. A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670–3678 (2004)

    Article  Google Scholar 

  10. J. Waters, D.B. Carington, D.W. Pepper, An adaptive finite element method with dynamic LES for turbulent reactive flows. Comput. Therm. Sci. Int. J. 2940–2503(8–1), 57–71 (2016)

    Article  Google Scholar 

  11. P.K. Jimack, N. Touheed, Developing parallel finite element software using MPI. HPC Comput. Mech. 15–38 (2000)

    Google Scholar 

  12. J. Waters, D.B. Carrington, Modeling turbulent reactive flow in internal combustion engines with an LES in a semi-implicit/explicit finite element projection method, in Proceedings of the ASME 2016 Internal Combustion Fall Technical Conference, ICEF2016, 9–12 Oct 2016, Greenville, SC, USA (accepted)

    Google Scholar 

  13. W.D. Joubert, G.F. Carey, PCG: a software package for the iterative solution of linear systems on scalar, vector and parallel computers, in Society for Industrial and Applied Mathematics (SIAM) Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 22–24 Mar, Norfolk, Virginia (1993)

    Google Scholar 

  14. M. Germano, U. Piomelli, P. Moin, W.H. Cabotm, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  15. D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  16. X. Wang, D.W. Pepper, Application of an hp-adaptive FEM for solving thermal flow problems. AIAA J. Thermophys. Heat Transf. 21(1), 190–198 (2007)

    Article  Google Scholar 

  17. D.B. Carrington, X. Wang, D.W. Pepper, A Predictor-Corrector Split projection method for turbulent reactive flow. Comput. Therm. Sci. 5(4), 333–353 (2013)

    Article  Google Scholar 

  18. D.B. Carrington, A parallel first-order spherical harmonics (P1) matrix-free method for radiative transport, in Numerical Heat Transfer, Part B: Fundamentals, vol. 53 (Taylor and Francis, 2008), pp. 1–21

    Google Scholar 

  19. J. Waters, D.B. Carrington, A parallel large eddy simulation in a finite element projection method for all flow regimes. Numer. Heat Transf. Part A Appl. 70(2), 117–131 (2016)

    Article  Google Scholar 

  20. P.K. Jimack, N. Touheed, Developing parallel finite element software using MPI. High Perform. Comput. Comput. Mech. 15–38 (2000)

    Google Scholar 

  21. G. Karypis, V. Kumar, MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. 2009, http://www.cs.umn.edu/~metis, University of Minnesota, Minneapolis, MN

  22. A.A. Mustto, G.C.R. Bodstein, Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Eng. Appl. Comput. Fluid Mech. 5(2), 259–275 (2011)

    Google Scholar 

  23. R. Merrick, G. Bitsuamlak, Control of flow around a circular cylinder by the use of surface roughness: a computational and experimental approach, http://www.ihrc.fiu.edu/wpcontent/uploads/2014/03/MerrickandBitsuamlak_FlowAroundCircularCylinders.pdf. Accessed 2008

  24. T. Kawamura, T. Nakao, M. Takahashi, M. Hayashi, K. Murayama, N. Gotoh, Synchronized vibrations of a circular cylinder in cross flow at supercritical reynolds numbers. ASME. J. Press. Vessel Technol. 125(1), 97–108 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The DOE’s Office of Energy Efficiency and Renewable Energy (EERE) Advanced Combustion Program (Gurpreet Singh and Leo Breton) is supporting this effort. Los Alamos National Laboratory, an affirmative action/equal opportunity employer is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy (DOE) under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell W. Pepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waters, J., Carrington, D.B., Wang, X., Pepper, D.W. (2018). A Dynamic LES Model for Turbulent Reactive Flow with Parallel Adaptive Finite Elements. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics