Skip to main content

Quantification of External Enthalpy Controlled Combustion at Unity Damköhler Number

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The use of external enthalpy support (e.g. via heat recirculation) can enable combustion beyond normal flammability limits and lead to significantly reduced emissions and fuel consumption. The present work quantifies the impact of such support on the combustion of lean (\(\varPhi = 0.6\)) turbulent premixed DME/air flames with a Damköhler number around unity. The flames were aerodynamically stabilised against thermally equilibrated hot combustion products (HCP) in a back-to-burnt opposed jet configuration featuring fractal grid generated multi-scale turbulence (\(Re \simeq 18{,}400\) and \(Re_t > 370\)). The bulk strain (\(a_b = 750\) s\(^{-1}\)) was of the order of the extinction strain rate (\(a_q = 600\) s\(^{-1}\)) of the corresponding laminar opposed twin flame with the mean turbulent strain (\(a_I = 3200\) s\(^{-1}\)) significantly higher. The HCP temperature (\(1600 \le T_{HCP}\)(K) \( \le 1800\)) was varied from close to the extinction point (\(T_{q} \simeq 1570\) K) of the corresponding laminar twin flame to beyond the unstrained adiabatic flame temperature (\(T_{ad} \simeq 1750\) K). The flames were characterised using simultaneous Mie scattering, OH-PLIF and PIV measurements and subjected to a multi-fluid analysis (i.e. reactants and combustion products, as well as mixing, weakly reacting and strongly reacting fluids). The study quantifies the (i) evolution of fluid state probabilities and (ii) interface statistics, (iii) unconditional and (iv) conditional velocity statistics, (v) conditional strain along fluid interfaces and (vi) scalar fluxes as a function of the external enthalpy support.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a :

Rate of strain [s\(^{-1}\)].

\(\overline{c}\) :

Reaction progress variable [–].

c :

Progress variable; Instantaneous conditioning variable [–].

\(\overline{cu}\) :

Scalar Flux [m s\(^{-1}\)].

D :

Burner nozzle diameter [m].

Da :

Conventional Damköhler number [–].

\(Da_{ign}\) :

Turbulent auto–ignition Damköhler number [–].

\(d_{p,x}\) :

Al\(_2\)O\(_3\) particle diameter x% [m].

e :

Planar rate of strain tensor [s\(^{-1}\)].

H :

Burner nozzle separation [m].

I :

OH signal intensity [–].

\(I^{\ddagger }\) :

Reference signal intensity [–].

Ka :

Conventional Karlovitz number [–].

\(Ka_{ign}\) :

Auto-ignition Karlovitz number [–].

[k]:

Theoretical concentration of species k [mol m\(^{-3}\)].

\(L_{\eta }\) :

Kolmogorov length scale [m].

\(L_I\) :

Integral length scale of turbulence [m].

N :

Total number of images [–].

\({\hat{{\mathbf {n}}}}\) :

Unit vector of the iso-contour normal [–].

\(\dot{Q}\) :

Heat release rate [W m\(^{-3}\)].

\(Re_t\) :

Turbulent Reynolds number [–].

\(S_L\) :

Laminar burning velocity [m s\(^{-1}\)].

\({\hat{{\mathbf {s}}}}\) :

Unit vector of the streamline tangent [–].

T :

Temperature [K].

\(T_{ad}\) :

Adiabatic flame temperature [K].

\(T_{ign}\) :

Auto-ignition temperature [K].

\(T_{HCP}\) :

Lower nozzle hot combustion product temperature [K].

U :

Flow velocity [m s\(^{-1}\)].

\(\overline{U}\) :

Mean unconditional axial velocity [m s\(^{-1}\)].

\(\overline{U_{\dots }}\) :

Mean conditional axial velocity [m s\(^{-1}\)].

u :

Velocity component [m s\(^{-1}\)].

\(\sqrt{u'^2}\) :

Unconditional axial velocity fluctuation [m s\(^{-1}\)].

\(\sqrt{u'^2_{\cdots }}\) :

Conditional axial velocity fluctuation [m s\(^{-1}\)].

\(u_{rms}\) :

Root mean square velocity fluctuation [m s\(^{-1}\)].

\(\overline{U}_s\) :

Slip velocity [m s\(^{-1}\)].

\(\overline{V}\) :

Mean unconditional radial velocity [m s\(^{-1}\)].

\(\dot{V}\) :

Lower nozzle volumetric flow rate [m\(^3\) s\(^{-1}\)].

\(\sqrt{v'^2}\) :

Unconditional radial velocity fluctuation [m s\(^{-1}\)].

\(\sqrt{v'^2_{\cdots }}\) :

Conditional radial velocity fluctuation [m s\(^{-1}\)].

X :

Mole fraction [–].

x :

Axial coordinate [m].

\(x_s\) :

Distance from origin of first thermal alteration [m].

y :

Radial coordinate [m].

\(\beta \) :

Fluid state material surface [–].

\(\delta _f\) :

Laminar fuel consumption layer thickness [m].

\(\varepsilon _r\) :

Rate of dissipation within the reactants [m\(^2\) s\(^{-3}\)].

\(\varLambda \) :

Threshold value [–].

\(\lambda _B\) :

Batchelor scale [m].

\(\lambda _D\) :

Mean scalar dissipation layer thickness [m].

\(\lambda _{MF}\) :

Multi-fluid spatial resolution [m].

\(\lambda _{PIV}\) :

PIV spatial resolution [m].

\(\nu _r\) :

Reactants kinematic viscosity [m\(^2\) s\(^{-1}\)].

\(\omega \) :

Planar vorticity tensor [s\(^{-1}\)].

\(\varPhi \) :

Equivalence ratio [–].

\(\tau _{c}\) :

Chemical timescale [s].

\(\tau _{\eta }\) :

Kolmogorov timescale [s].

\(\tau _{ign}\) :

Auto-ignition delay time [s].

\(\tau _{I}\) :

Integral timescale of turbulence [s].

\(\xi \) :

Blending fraction [%\(_{vol}\)].

0:

Alignment at the origin; initial value.

\(^\ddagger \) :

Reference value.

BTB :

Back-to-burnt configuration.

b :

Bulk flow motion.

d :

Total.

FS :

Fluid state.

HCP :

Hot combustion products.

I :

Integral scale; turbulent.

ij:

Pixel index.

k :

Velocity component.

M :

Mixing fluid iso-contour.

m :

Mixing fluid.

n :

Instantaneous image; normal.

NE :

Nozzle exit.

p :

Product fluid.

q :

Extinction conditions.

R :

Reactant fluid iso-contour.

r :

Reactant fluid.

SR :

Strongly reacting fluid iso-contour.

s :

Strongly reacting (flamelet) fluid.

T :

Dependency on HCP temperature.

t :

Tangential.

WR :

Weakly reacting fluid iso-contour.

w :

Weakly reacting fluid.

References

  1. F.J. Weinberg, Combustion temperatures: the future? Nature 233, 39–241 (1971)

    Article  Google Scholar 

  2. E. Mastorakos, A.M.K.P. Taylor, J.H. Whitelaw, Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust. Flame 102, 101–114 (1995)

    Article  Google Scholar 

  3. J.A. Wünning, J.G. Wünning, Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. 23, 81–94 (1997)

    Article  Google Scholar 

  4. I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids 30, 683–695 (2001)

    Article  Google Scholar 

  5. Z. Zhao, A. Kazakov, J. Li, F.L. Dryer, The initial temperature and N\(_2\) dilution effect on the laminar flame speed of propane/air. Combust. Sci. Technol. 176, 1705–1723 (2004)

    Article  Google Scholar 

  6. H.J. Curran, S.L. Fischer, F.L. Dryer, Reaction kinetics of dimethylether. II: Low-temperature oxidation in flow reactors. Int. J. Chem. Kinet. 32, 741–759 (2000)

    Article  Google Scholar 

  7. R. Lückerath, W. Meier, M. Aigner, FLOX combustion at high pressure with different fuel compositions. J. Eng. Gas Turb. Power 130, 011505 (2008)

    Article  Google Scholar 

  8. T. Plessing, N. Peters, J.G. Wünning, Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)

    Article  Google Scholar 

  9. J. Sidey, E. Mastorakos, R.L. Gordon, Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol. 186, 453–465 (2014)

    Article  Google Scholar 

  10. Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Reaction zones and their structure in MILD combustion. Combust. Sci. Technol. 186, 1075–1096 (2014)

    Article  Google Scholar 

  11. B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, X.-S. Bai, Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization. Combust. Flame 162, 2937–2953 (2015)

    Article  Google Scholar 

  12. B. Zhou, C. Brackmann, Z. Li, M. Aldén, X.-S. Bai, Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35, 1409–1416 (2015)

    Article  Google Scholar 

  13. B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, X.-S. Bai, Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2016)

    Article  Google Scholar 

  14. A.R. Masri, R.W. Dibble, R.S. Barlow, The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996)

    Article  Google Scholar 

  15. R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Comb. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  16. D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)

    Article  Google Scholar 

  17. K.H.H. Goh, P. Geipel, R.P. Lindstedt, Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434 (2014)

    Article  Google Scholar 

  18. Goh KHH (2013) Investigation of conditional statistics in premixed combustion and the transition to flameless oxidation in turbulent opposed jets. Ph.D. thesis, Imperial College. http://hdl.handle.net/10044/1/28073

  19. B. Coriton, J.H. Frank, A. Gomez, Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)

    Article  Google Scholar 

  20. K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proc. Combust. Inst. 34, 3311–3318 (2013)

    Article  Google Scholar 

  21. K.H.H. Goh, P. Geipel, R.P. Lindstedt, Turbulent transport in premixed flames approaching extinction. Proc. Combust. Inst. 35, 1469–1476 (2015)

    Article  Google Scholar 

  22. F. Hampp, R.P. Lindstedt, Quantification of combustion regime transitions in premixed turbulent DME flames. Combust. Flame 182, 248–268 (2017)

    Article  Google Scholar 

  23. F. Hampp, R.P. Lindstedt, Strain distribution on material surfaces during combustion regime transitions. Proc. Combust. Inst. 36, 1911–1918 (2017)

    Article  Google Scholar 

  24. B. Coriton, M.D. Smooke, A. Gomez, Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames. Combust. Flame 157, 2155–2164 (2000)

    Article  Google Scholar 

  25. E. Abtahizadeh, J. van Oijen, P. de Goey, Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame 159, 2155–2165 (2012)

    Article  Google Scholar 

  26. T. Fleisch, C. McCarthy, A. Basu, C. Udovich, P. Charbonneau, W. Slodowske, S.-E. Mikkelsen, J. McCandless, A new clean diesel technology: demonstration of ULEV emissions on a Navistar diesel engine fueled with dimethyl ether, SAE, 950061 (1995)

    Google Scholar 

  27. S.C. Sorenson, S.E. Mikkelsen, Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether, SAE, 950064 (1995)

    Google Scholar 

  28. S.-W. Park, Detailed chemical kinetic model for oxygenated fuels. Ph.D. thesis, Imperial College. http://hdl.handle.net/10044/1/9599 (2012)

  29. K.N.C. Bray, Laminar flamelets and the Bray, Moss, and Libby Model, in Turbulent Premixed Flames, ed. by N. Swaminathan, K.N.C. Bray (Cambridge University Press, 2001), pp. 41–60. ISBN: 978-0-521-76961-7

    Google Scholar 

  30. F. Hampp, Quantification of combustion regime transitions. Ph.D. thesis, Imperial College. http://hdl.handle.net/10044/1/32582 (2016)

  31. F. Hampp, R.P. Lindstedt, Fractal grid generated turbulence—a bridge to practical combustion applications, in Fractal Flow Design: How to Design Bespoke Turbulence and Why. CISM International Centre for Mechanical Sciences 568, ed. by Y. Sakai, C. Vassilicos (Springer, 2016). https://doi.org/10.1007/978-3-319-33310-6_3

    Google Scholar 

  32. P. Geipel, K.H.H. Goh, R.P. Lindstedt, Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85, 397–419 (2010)

    Article  Google Scholar 

  33. K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Flames in fractal grid generated turbulence. Fluid Dyn. Res. 45, 061403 (2013)

    Article  Google Scholar 

  34. N. Peters, Kinetic foundation of thermal flame theory, in, Advances in Combustion Science: In Honor of Y. B. Zel’dovich. Progress in Astronautics and Aeronautics 173, ed. by W.A. Sirignano, A.G. Merzhanov, L. de Luca (AIAA, 1997), pp. 73–91

    Google Scholar 

  35. J. Kerl, T. Sponfeldner, F. Beyrau, An external Raman laser for combustion diagnostics. Combust. Flame 158, 1905–1907 (2011)

    Article  Google Scholar 

  36. B. Wieneke, K. Pfeiffer, Adaptive PIV with variable interrogation window size and shape, in 15th International Symposium on the Application of Laser Techniques to Fluid Mechanics (2010). http://ltces.dem.ist.utl.pt/LXLASER/lxlaser2010/upload/1845_qkuqls_1.12.3.Full_1845.pdf

  37. W.P. Jones, R.P. Lindstedt, The calculation of the structure of laminar counterflow diffusion flames using a global reaction mechanism. Combust. Sci. Technol. 61, 31–49 (1988)

    Article  Google Scholar 

  38. J. Sidey, E. Mastorakos, Visualization of MILD combustion from jets in cross-flow. Proc. Combust. Inst. 35, 3537–3545 (2015)

    Article  Google Scholar 

  39. Y. Minamoto, N. Swaminathan, Scalar gradient behaviour in MILD combustion. Combust. Flame 161, 1063–1075 (2014)

    Article  Google Scholar 

  40. Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)

    Article  Google Scholar 

  41. W.K. George, H.J. Hussein, Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)

    Article  Google Scholar 

  42. I.G. Shepherd, R.K. Cheng, P.J. Goix, The spatial scalar structure of premixed turbulent stagnation point flames. Proc. Combust. Inst. 23, 781–787 (1991)

    Article  Google Scholar 

  43. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008)

    Article  Google Scholar 

  44. B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)

    Article  Google Scholar 

  45. B.E. Battles, R.K. Hanson, Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation. J. Quant. Spectrosc. Radiat. Transf. 54, 521–537 (1995)

    Article  Google Scholar 

  46. S. Krishna, R.V. Ravikrishna, Quantitative OH planar laser induced fluorescence diagnostics of syngas and methane combustion in a cavity combustor. Combust. Sci. Technol. 187, 1661–1682 (2015)

    Article  Google Scholar 

  47. K.A. Buch, W.J.A. Dahm, Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc = 1. J. Fluid Mech. 364, 1–29 (1998)

    Article  Google Scholar 

  48. G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MathSciNet  Google Scholar 

  49. G. Hartung, J. Hult, C.F. Kaminski, J.W. Rogerson, N. Swaminathan, Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20, 035110 (2008)

    Article  Google Scholar 

  50. N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the AFOSR and EOARD under Grant FA9550-17-1-0021 and thank Dr. Chiping Li and Dr. Russ Cummings for encouraging the work. The US Government is authorised to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon. The authors would also like to thank Dr. Robert Barlow for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Peter Lindstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hampp, F., Lindstedt, R.P. (2018). Quantification of External Enthalpy Controlled Combustion at Unity Damköhler Number. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics