Skip to main content

Effect of Fuel Unsaturation on Emissions in Flames and Diesel Engines

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Due to the emergence of a new generation of renewable fuels and the need to accurately model the combustion chemistry of multi-component fuels, there is growing interest in examining the effect of fuel molecular structure on fuel reactivity. This book chapter provides an overview of research dealing with the effects of fuel unsaturation on the ignition, combustion, and emission characteristics. Results from both laboratory-scale configurations, such as shock tube, rapid compression machine, and laminar flames, as well as from high-pressure sprays in compression ignition engines are discussed. Experimental and kinetic modeling studies of homogeneous mixtures provide clear evidence that depending upon the number and position of C = C double bonds, and the reactivity of long-chain hydrocarbons is significantly affected by fuel unsaturation, especially at low to intermediate temperatures. Ignition data for saturated and unsaturated components indicate that the presence of double bond inhibits low-temperature reactivity, modifies the NTC behavior, and leads to reduction in CN number in diesel engines. This has important consequences regarding the effect of unsaturation on combustion and emission in practical systems. High-pressure spray simulations under diesel engine conditions indicate longer ignition delays for 1-heptene compared to those for n-heptane. In addition, the n-heptane spray flame contains two reaction zones, namely a rich premixed zone (RPZ) and a nonpremixed reaction zone (NPZ). In contrast, 1-heptene flame is characterized by three reaction zones, i.e., a lean premixed zone (LPZ) in addition to NPZ and RPZ. Simulations of laminar partially premixed flames (PPF) indicate higher amounts of NOx and soot precursor species (C2H2, C6H6, and C16H10) formed in 1-heptene flames than those in n-heptane flames. Consequently, the soot emission is higher in 1-heptene flames than that in n-heptane flames. Simulations of turbulent n-heptane and 1-heptene spray flames in diesel engines lead to similar conclusions, i.e., higher NOx and soot emissions in 1-heptene flames. The increased formation of PAH species can be attributed to the significantly higher amounts of 1,3-butadiene and allene formed due to β scission reactions resulting from the presence of double bond in 1-heptene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Such surrogates are not discussed in this chapter as the main topic is the effect of fuel unsaturation.

References

  1. C.K. Westbrook, W.J. Pitz, S.M. Sarathy, M. Mehl, Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels. Proc. Combust. Inst. 34, 3049–3056 (2013)

    Article  Google Scholar 

  2. M.S. Graboski, R.L. McCormick, Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24, 125–164 (1998)

    Article  Google Scholar 

  3. G. Kalghatgi, H. Babiker, J. Badra, A simple method to predict knock using toluene, n-heptane and iso-octane blends (TPRF) as gasoline surrogates. SAE Int. J. Eng. 8, 505–519 (2015)

    Article  Google Scholar 

  4. T. Javed, C. Lee, M. Al Abbad, K. Djebbi, M. Beshir, J. Badra, H. Curran, A. Farooq, Ignition studies of n-heptane/iso-octane/toluene blends. Combust. Flame 171, 223–233 (2016)

    Article  Google Scholar 

  5. T. Javed, E.F. Nasir, A. Ahmed, J. Badra, K. Djebbi, M. Beshir, W. Ji, S.M. Sarathy, A. Farooq, Ignition delay measurements of light naphtha: a fully blended low octane fuel. Proc. Combust. Inst. 36(1), 315–322 (2017)

    Article  Google Scholar 

  6. S. Tanaka, F. Ayala, J.C. Keck, J.B. Heywood, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust. Flame 132, 219–239 (2003)

    Article  Google Scholar 

  7. CHEMKIN-PRO 15141, Reaction Design, San Diego, 2015

    Google Scholar 

  8. D.G. Moffat, K. Harry, R.L. Speth, Cantera: an object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2017), http://www.cantera.org. Version 2.3.0. https://doi.org/10.5281/zenodo.170284

  9. S. Touchard, F. Buda, G. Dayma, P.A. Glaude, R. Fournet, F. Battin-Leclerc, Int. J. Chem. Kinet. 37(8), 451–463 (2005)

    Article  Google Scholar 

  10. M. Mehl, W.J. Pitz, C.K. Westbrook, K. Yasunaga, C. Conroy, H.J. Curran, Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions. Proc. Combust. Inst. 33, 201–208 (2011)

    Article  Google Scholar 

  11. S. Garner, R. Sivaramakrishnan, K. Brezinsky, The high-pressure pyrolysis of saturated and unsaturated C7 hydrocarbons. Proc. Combust. Inst. 32, 461–467 (2009)

    Article  Google Scholar 

  12. R. Minetti, A. Roubaud, E. Therssen, M. Ribaucour, L.R. Sochet, The chemistry of pre-ignition of n-pentane and 1-pentene. Combust. Flame 118, 213–220 (1999)

    Article  Google Scholar 

  13. G. Vanhove, M. Ribaucour, R. Minetti, On the influence of the position of the double bond on the low-temperature chemistry of hexenes. Proc. Combust. Inst. 30, 1065–1072 (2005)

    Article  Google Scholar 

  14. S.K. Prabhu, R.K. Bhat, D.L. Miller, N.P. Cernansky, 1-Pentene oxidation and its interaction with nitric oxide in the low and negative temperature coefficient regions. Combust. Flame 104, 377–391 (1996)

    Article  Google Scholar 

  15. M. Pelucchi, M. Bissoli, C. Cavallotti, A. Cuoci, T. Faravelli, A. Frassoldati, E. Ranzi, A. Stagni, Improved kinetic model of the low-temperature oxidation of n-heptane. Energy Fuels 28(11), 7178–7193 (2014)

    Article  Google Scholar 

  16. E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38(4), 468–501 (2012)

    Article  Google Scholar 

  17. M. Mehl, G. Vanhove, W.J. Pitz, E. Ranzi, Oxidation and combustion of the n-hexene isomers: a wide range kinetic modeling study. Combust. Flame 155, 756–772 (2008)

    Article  Google Scholar 

  18. S. Garner, T. Dubois, C. Togbe, N. Chaumeix, P. Dagaut, K. Brezinsky, Biologically derived diesel fuel and NO formation: Part 2: model development and extended validation. Combust. Flame 158, 2302–2313 (2011)

    Article  Google Scholar 

  19. C.K. Westbrook, W.J. Pitz, S.M. Sarathy, M. Mehl, Detailed chemical kinetic modeling of the effects of C = C double bonds on the ignition of biodiesel fuels. Proc. Combust. Inst. 34(2), 3049–3056 (2013)

    Article  Google Scholar 

  20. S.K. Aggarwal, Single droplet ignition: theoretical analyses and experimental findings. Prog. Energ Combust. Sci. (2014). https://doi.org/10.1016/j.pecs.2014.05.002

    Article  Google Scholar 

  21. O. Moriue, C. Eigenbrod, H.J. Rath, J. Sato, K. Okai, M. Tsue, M. Kono, Effects of dilution by aromatic hydrocarbons on staged ignition behavior of n-decane droplets. Proc. Combust. Inst. 28, 969–975 (2000)

    Article  Google Scholar 

  22. A. Cuoci, M. Mehl, G. Buzzi-Ferraris, T. Faravelli, D. Manca, E. Ranzi, Autoignition and burning rates of fuel droplets under microgravity. Combust. Flame 143, 211–226 (2005)

    Article  Google Scholar 

  23. Z. Bouali, C. Pera, J. Reveillon, Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition. Combust. Flame 159, 2056–2068 (2012)

    Article  Google Scholar 

  24. M.C. Wolff, J. Meisl, R. Koch, S. Wittig, The influence of evaporation on the autoignition-delay of n-heptane air mixtures under gas turbine conditions. Proc. Combust. Inst. 27, 2025–2031 (1998)

    Article  Google Scholar 

  25. S.K. Aggarwal, A review of spray ignition phenomenon: present status and future research. Prog. Energy Combust. Sci. 24, 565–600 (1998)

    Article  Google Scholar 

  26. E. Mastorakos, Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  27. L.M. Pickett, S. Kook, H. Persson, O. Andersson, Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition. Proc. Combust. Inst. 32, 2793–2800 (2009)

    Article  Google Scholar 

  28. S. Som, S.K. Aggarwal, Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust. Flame 157, 1179–1193 (2010)

    Article  Google Scholar 

  29. X. Fu, S.K. Aggarwal, Two-stage ignition and NTC phenomenon in diesel engines. Fuel 144, 188–196 (2015)

    Article  Google Scholar 

  30. H.J. Curran, W.J. Pitz, C.K. Westbrook, C.V. Callahan, F.L. Dryer, Oxidation of automotive primary reference fuels at elevated pressures. Proc. Combust. Inst. 27, 379–387 (1998)

    Article  Google Scholar 

  31. S. Sharma, S.K. Aggarwal, Effects of fuel unsaturation on transient ignition and flame development in sprays. Combust. Sci. Technol. (2017). https://doi.org/10.1080/00102202.2017.1378649

    Article  Google Scholar 

  32. Engine Combustion Network (ECN), diesel sprays data search utility (2015), http://www.sandia.gov/ecn/cvdata/dsearch/frameset.php. Accessed Feb 2015

  33. S. Sharma, A numerical study of transient ignition and flame structure in diesel sprays in a constant volume reactor, M.S. thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, 2017

    Google Scholar 

  34. R.L. McCormick, M.S. Graboski, T.L. Alleman, A.M. Herring, K.S. Tyson, Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35(9), 1742–1747 (2001)

    Article  Google Scholar 

  35. S. Puhan, N. Saravanan, G. Nagarajan, N. Vedaraman, Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass Bioenerg. 34, 1079–1088 (2010)

    Article  Google Scholar 

  36. M. Lapuerta, J.M. Herreros, L.L. Lyons, R. García-Contreras, Y. Briceño, Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 87, 3161–3169 (2008)

    Article  Google Scholar 

  37. A. Schönborn, N. Ladommatos, J. Williams, R. Allan, J. Rogerson, The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combust. Flame 156, 1396–1412 (2009)

    Article  Google Scholar 

  38. S. Garner, K. Brezinsky, Biologically derived diesel fuel and NO formation: an experimental and chemical kinetic study, Part 1. Combust. Flame 158, 2289–2301 (2011)

    Article  Google Scholar 

  39. M. Frenklach, H. Wang, Proc. Combust. Inst. 23, 1559 (1991)

    Article  Google Scholar 

  40. M. Frenklach, Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002)

    Article  Google Scholar 

  41. X. Han, S.K. Aggarwal, K. Brezinsky, Effect of unsaturated bond on NOx and PAH formation in n-Heptane and 1-Heptene triple flames. Energy Fuels 27, 537–548 (2013)

    Article  Google Scholar 

  42. A.E. Lutz, R.J. Kee, J.F. Grcar, FM. Rupley, OPPDIF: a FORTRAN program for computing opposed flow diffusion flames. Sandia Natl. Lab. [Tech. Rep.] SAND 96−8243, UC-1404 (1997)

    Google Scholar 

  43. E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, T. Faravelli, Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27, 99–139 (2001)

    Article  Google Scholar 

  44. J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338 (1989)

    Article  Google Scholar 

  45. J.W. Bozzelli, A.M. Dean, O+NNH: a possible new route for NOx formation in flames. Int. J. Chem. Kinet. 27, 1097–1109 (1995)

    Article  Google Scholar 

  46. X. Fu, S. Garner, S.K. Aggarwal, K. Brezinsky, Numerical study of NOx emissions from n-heptane and 1-heptene counterflow flames. Energy Fuels 26, 879–888 (2012)

    Article  Google Scholar 

  47. X. Fu, X. Han, K. Brezinsky, S.K. Aggarwal, Effect of fuel molecular structure and premixing on soot emissions from n-heptane and 1-heptene flames. Energy Fuels 27(10), 6262–6272 (2013)

    Article  Google Scholar 

  48. X. Fu, S.K. Aggarwal, Fuel unsaturation effects on NOx and PAH formation in spray flames. Fuel 160, 1–15 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Most of the results presented in this chapter are from the work of my graduate students as part of their thesis research. In particular, I acknowledge the contributions of Dr. Sibendu Som, Dr. Xiao Fu, Mr. Xu Han, and Mr. Saurabh Sharma. The help provided by Dr. P. K. Senecal and his colleagues at Convergent Science in using the Converge code is also greatly appreciated. Many of the simulations were performed at the UIC High Performance Computing Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, S.K. (2018). Effect of Fuel Unsaturation on Emissions in Flames and Diesel Engines. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics