Skip to main content

Investigation of the Role of Chemical Kinetics in Controlling Stabilization Mechanism of the Turbulent Lifted Jet Flame Using Multi-flamelet Generated Manifold Approach

  • Chapter
  • First Online:
Energy for Propulsion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The study reports on the numerical investigation of lifted turbulent jet flames with H2/N2 fuel issuing into a vitiated coflow. The hot vitiated co-flow containing oxygen as well as combustion products stabilize the lifted turbulent flame by providing an autoignition source. A 2D axisymmetric formulation has been used for the predictions of the flow field, while multidimensional Flamelet Generated Manifold (multi-FGM) approach has been used for turbulence-chemistry interactions in conjunction with RANS approach. The chemical kinetics in H2-O2 combustion is followed by (Mueller et al, Int J Chem Kinet 31: 113–125, 1999 [1]) and (Li et al, Int J Chem Kinet 36(10): 566–575, 2004 [2]) mechanisms and the difference in chemical kinetics is analyzed (in terms of auto-ignition distance) using one-dimensional calculations. The major difference between the two mechanisms is the value of rate constants contributing towards the source of the autoignition and the corresponding enthalpy of formation of OH radicals. The lift-off height is determined from the axial distance (from the burner exit) at which the auto-ignition occurs, and is located through local concentration of OH radical equivalent to 2 × 10−4. In order to understand the impact of chemical kinetics on the autoignition, speeding up (Set A) and delaying (Set B) auto-ignition controlled reaction rates are augmented and corresponding changes in lift-off height are observed. Hereafter, the comprehensive chemical kinetics sensitivity analysis is carried out in understanding the underlying behavior of HO2 radicals as autoignition precursor and OH radicals as reaction rate determinant. It is found that some specific reaction is most sensitive to auto-ignition and plays a vital role in lift-off height predictions. The results obtained in the current study elucidates that the flame is largely controlled by chemical kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Flow reactor studies and kinetic modelling of the H2/O2 reaction. Int. J. Chem. Kinet. 31, 113–125 (1999)

    Article  Google Scholar 

  2. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004)

    Article  Google Scholar 

  3. B.J. Lee, S.H. Chung, Stabilization of lifted tribrachial flames in laminar non-premixed jets. Combust. Flame 109, 163–172 (1997)

    Article  Google Scholar 

  4. O. Savas, S.R. Gollahalli, Stability of lifted laminar round gas-jet flame. J. Fluid Mech. 165, 297–318 (1986)

    Article  Google Scholar 

  5. W.M. Pitts, Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames. Combust. Flame 22(1), 809–816 (1989)

    Article  Google Scholar 

  6. K.M. Lyons, Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci. 33(2), 211–231 (2007)

    Article  Google Scholar 

  7. L. Muniz, M.G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 16–31 (1997)

    Article  Google Scholar 

  8. L. Vervisch, G.R. Ruetsch, A. Linan, Effects of heat release on triple flames. Phys. Fluids 7, 1447–1454 (1995)

    Article  Google Scholar 

  9. D. Veynante, L. Vervisch, T. Poinsot, A. Linan, G.R. Ruetsch, Triple flame structure and diffusion flame stabilization. in Proceedings of Summer Program, Center for Turbulence Research, NASA Ames/Stanford University (1994)

    Google Scholar 

  10. N. Peters, F.A. Williams, Lift-off characteristics of turbulent jet diffusion flames. AIAA J. 21, 423–429 (1983)

    Article  Google Scholar 

  11. J. Janicka, N. Peters, Prediction of turbulent jet diffusion flame lift-off using PDF transport equation. Combust. Flame 19(1), 367–374 (1982)

    Article  Google Scholar 

  12. N. Peters, Partially premixed diffusion flamelets in non-premixed turbulent combustion. Combust. Flame 20(1), 353–360 (1985)

    Article  Google Scholar 

  13. W.M. Pitts, Large-scale turbulent structures and the stabilisation of lifted turbulent jet diffusion flames. Combust. Flame 23(1), 661–668 (1991)

    Article  Google Scholar 

  14. J.E. Broadwell, J.A. Werner, M. Dahm, G. Mungal, Blowout of turbulent diffusion flames. Proc. Combust. Inst. 20(1), 303–310 (1985)

    Article  Google Scholar 

  15. R.W. Schefer, M. Namazian, J. Kelly, Stabilization of lifted turbulent-jet flames. Combust. Flame 99, 75–86 (1994)

    Article  Google Scholar 

  16. J.B. Kelman, A.R. Masri, Laser imaging in the stabilisation region of turbulent lifted flames. Combust. Sci. Technol. 135, 117–134 (1998)

    Article  Google Scholar 

  17. M.M. Tacke, D. Geyer, E.P. Hassel, J. Janicka, A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst. 27, 1157–1165 (1998)

    Article  Google Scholar 

  18. R. Cabra, T. Myhrvold, Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  19. T. Echekki, K.G. Gupta, Hydrogen autoignition in a turbulent jet with preheated co-flow air. Int. J. Hydrog. Energy 34, 8352–8377 (2009)

    Article  Google Scholar 

  20. M. O’Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36, 603–622 (2004)

    Article  Google Scholar 

  21. C.T. Bowman, R.K. Hanson, D.F. Davidson, Gardiner Jr, V. Lissianski, G.P. Smith, D.M. Golden, M. Goldenberg, M. Frenklach, Gri-Mech 2.11. http://www.me.berkeley.edu/gri-mech/1999

  22. W.P. Jones, S.N. Martinez, Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170–187 (2007)

    Article  Google Scholar 

  23. S.S. Patwardhan, S. De, K.N. Lakshmisha, B.N. Raghunandan, CMC simulations of lifted turbulent jet flame in a vitiated coflow. Proc. Combust. Inst. 32, 1705–1712 (2009)

    Article  Google Scholar 

  24. S. De, A. De, A. Jaiswal, A. Dash, Stabilization of lifted hydrogen jet diffusion flame in a vitiated co-flow: effects of jet and coflow velocities, coflow temperature and mixing. Int. J. Hydrog. Energy 41, 15026–15042 (2016)

    Article  Google Scholar 

  25. A.E. Sayed, R.A. Fraser, Consistent conditional moment closure modelling of a lifted turbulent jet flame using the presumed ß-PDF approach. J. Combust. (2014). https://doi.org/10.1155/2014/507459

    Article  Google Scholar 

  26. S.N. Martinez, A. Kronenburg, Flame stabilization mechanisms in lifted flames. Flow Turbulent Combust. 87, 377–406 (2001)

    Article  Google Scholar 

  27. I. Stankovic, B. Merci, LES-CMC simulations of turbulent lifted hydrogen flame in a vitiated air co-flow. Therm. Sci. 17, 763–772 (2013)

    Article  Google Scholar 

  28. T. Myhrvold, I.S. Ertesvag, I.R. Gran, R. Cabra, A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178, 1001–1030 (2006)

    Article  Google Scholar 

  29. A.R. Masri, R. Cao, S.B. Pope, G.M. Goldin, PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated coflow. Combust Theory Model 8, 1–22 (2004)

    Article  Google Scholar 

  30. R.R. Cao, S.B. Pope, A.R. Masri, Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)

    Article  Google Scholar 

  31. R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust Theory Model 11, 351–376 (2007)

    Article  Google Scholar 

  32. I. Stankovic, B. Merci, Analysis of auto-ignition of heated hydrogen–air mixtures with different detailed reaction mechanisms. Combust Theory Model 15(3), 409–436 (2011)

    Article  Google Scholar 

  33. C.S. Yoo, R. Sankaran, J.H. Chen, Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453–481 (2009)

    Article  Google Scholar 

  34. K. Luo, H. Wang, F. Yi, J. Fan, Direct numerical simulation study of an experimental lifted H2/N2 Flame. Part 1: validation and flame structure. Energy Fuels 26, 6118–6127 (2012)

    Article  Google Scholar 

  35. H. Wang, K. Luo, F. Yi, J. Fan, Direct numerical simulation study of an experimental lifted H2/N2 flame. Part 2: flame stabilization. Energy Fuels 26, 4830–4839 (2012)

    Article  Google Scholar 

  36. E. Knudsen, H. Pitsch, Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159, 242–264 (2012)

    Article  Google Scholar 

  37. Y. Wu, C. Cao, Y.E. Taohong, L.I.N. Qizhao, A new multi-dimensional flamelet generated manifolds approach for approximating partially premixed flame structure. J. Therm. Sci. Technol. JPN 10(1), 1–15 (2015)

    Google Scholar 

  38. W. Xu, L. Yujian, L. Kun, J. Hanhui, F. Jianren, LES of pulverized coal combustion with a multi-regime flamelet model. Fuel 188, 661–671 (2017)

    Article  Google Scholar 

  39. M.U. Göktolga, J.A. van Oijen, L.P.H. de Goey, Modeling MILD combustion using a novel multistage FGM method. Proc. Combust. Inst. 36(3), 4269–4277 (2016)

    Article  Google Scholar 

  40. P.D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157(1), 43–61 (2010)

    Article  Google Scholar 

  41. B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140(3), 147–160 (2005)

    Article  Google Scholar 

  42. J.A. Van Oijen, R.J.M. Bastiaans, L.P.H. de Goey, Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst. 31, 1377–1384 (2007)

    Article  Google Scholar 

  43. P. Domingo, L. Vervisch, D. Veynante, Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)

    Article  Google Scholar 

  44. M. Ihme, Y.C. See, Large-eddy simulation of a turbulent lifted flame in a vitiated co-flow. Flow Turbulent Combust 87, 407–423 (2011)

    Article  Google Scholar 

  45. J.A. Van Oijen, A. Donini, R.J.M. Bastiaans, J.H.M. ten Thije Boonkkamp, L.P.H. de Goey, State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog. Energy Combust. Sci. 57, 30–74 (2016)

    Article  Google Scholar 

  46. ANSYS Fluent 16.0 User’s guide, Canonsburg, PA, USA

    Google Scholar 

  47. R. Yadav, A. De, S. Jain, A hybrid flamelet generated manifold model for modeling partially premixed turbulent combustion flames. in Proceedings of ASME TurboExpo (2017). GT2017-65030

    Google Scholar 

  48. R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. No. SAND-89-8009. Sandia National Labs., Livermore, CA (1989)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the IITK computer center (www.iitk.ac.in/cc) for providing support to perform the computation work, data analysis, and article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, R., De, A., Aggarwal, V., Yadav, R. (2018). Investigation of the Role of Chemical Kinetics in Controlling Stabilization Mechanism of the Turbulent Lifted Jet Flame Using Multi-flamelet Generated Manifold Approach. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics