Skip to main content

Direct Numerical Simulation Study of Lean Hydrogen/Air Premixed Combustion

  • Chapter
  • First Online:
Energy for Propulsion

Part of the book series: Green Energy and Technology ((GREEN))

  • 918 Accesses

Abstract

Turbulence-chemistry interaction is known to play a vital role in changing the characteristics of a flame surface. It changes evolution, propagation, annihilation, local extinction characteristics of the flame front. This study seeks to understand how turbulence interaction affects flame surface geometry and propagation of turbulent premixed H2/Air flames in a three-dimensional configuration. 3D Direct Numerical Simulation (DNS) study of premixed turbulent H2/Air flames has been carried out using an inflow–outflow configuration at moderate Reynolds number (Re) with a fairly detailed chemistry. The simulations are conducted at different parametric conditions in conjunction with differential diffusion (non-uniform Lewis number) effects. The topology of the flame surface is interpreted in terms of its propagation and statistics. Statistics related to the flame surface area and the correlations between the curvature and the gradient of temperature are obtained from the computed fields. It is found that the displacement speed increases with the negative mean curvature, while it correlates well for high turbulent cases and scattered for low turbulent cases. It is also observed that the diffusion effects become more dominant for deciding the flame structure when the mean flow is lower (low Re case). Further, the unsteady effects of tangential strain rate, curvature on flame propagation, and heat release rate are also investigated. Later, effects of prominent species and radicals are described to correlate the production of the maximum heat release rate in the lower temperature regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)

    Article  Google Scholar 

  2. H.G. Im, P.G. Arias, S. Chaudhuri, H.A. Uranakara, Direct numerical simulations of statistically stationary turbulent premixed flames. Combust. Sci. Technol. 188(8), 1182–1198 (2016)

    Article  Google Scholar 

  3. C.K. Law, Dynamics of stretched flames. in Symposium (international) on Combustion, vol. 22, no. 1, (1989), pp. 1381–1402

    Article  Google Scholar 

  4. P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985)

    Article  Google Scholar 

  5. T. Poinsot, D. Veynante, S. Candel, Diagrams of premixed turbulent combustion based on direct simulation. in Symposium (international) on Combustion, vol. 23, no. 1, (1991), pp. 613–619

    Article  Google Scholar 

  6. S. Kadowaki, T. Hasegawa, Numerical simulation of dynamics of premixed flames: flame instability and vortex–flame interaction. Prog. Energy Combust. 31(3), 193–241 (2005)

    Article  Google Scholar 

  7. V. Sankaran, S. Menon, Structure of premixed turbulent flames in the thin-reaction-zones regime. Proc. Combust. Inst. 28(1), 203–209 (2000)

    Article  Google Scholar 

  8. V. Sankaran, S. Menon, Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30(1), 575–582 (2005)

    Article  Google Scholar 

  9. H.N. Najm, P.S. Wyckoff, Premixed flame response to unsteady strain rate and curvature. Combust. Flame 110(1–2), 92IN595-4IN6112 (1997)

    Article  Google Scholar 

  10. A.N. Lipatnikov, J. Chomiak, Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. 31(1), 1–73 (2005)

    Article  Google Scholar 

  11. A.N. Lipatnikov, J. Chomiak, Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. 36(1), 1–02 (2010)

    Article  Google Scholar 

  12. G.H. Markstein (ed.), Nonsteady Flame Propagation: AGARDograph (Elsevier, 2014)

    Google Scholar 

  13. P. Clavin, G. Joulin, Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett Paris 44(1), 1–2 (1983)

    Article  Google Scholar 

  14. M. Matalon, B.J. Matkowsky, Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)

    Article  Google Scholar 

  15. N. Chakraborty, R.S. Cant, Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17(10), 105105 (2005)

    Article  Google Scholar 

  16. N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19(4), 045103 (2007)

    Article  Google Scholar 

  17. M. Baum, T.J. Poinsot, D.C. Haworth, N. Darabiha, Direct numerical simulation of H 2/O 2/N 2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 1–32 (1994)

    Article  Google Scholar 

  18. H. Wang, K. Luo, S. Lu, J. Fan, Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydrog. Energy 36(21), 13838–13849 (2011)

    Article  Google Scholar 

  19. P.E. Hamlington, A.Y. Poludnenko, E.S. Oran, Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12), 125111 (2011)

    Article  Google Scholar 

  20. J.B. Chen, H.G. Im, Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28(1), 211–218 (2000)

    Article  Google Scholar 

  21. J. Jiang, X. Jiang, M. Zhu, A computational study of preferential diffusion and scalar transport in nonpremixed hydrogen-air flames. Int. J. Hydrog. Energy 40(45), 15709–15722 (2015)

    Article  Google Scholar 

  22. K.R. Dinesh, X. Jiang, J.A. Van Oijen, R.J. Bastiaans, L.P. De Goey, Hydrogen-enriched nonpremixed jet flames: effects of preferential diffusion. Int. J. Hydrog. Energy 38(11), 4848–4863 (2013)

    Article  Google Scholar 

  23. K.R. Dinesh, H. Shalaby, K.H. Luo, J.A. van Oijen, D. Thévenin, High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: effects of preferential diffusion. Int. J. Hydrog. Energy 41(40), 18231–18249 (2016)

    Article  Google Scholar 

  24. C. Han, D.O. Lignell, E.R. Hawkes, J.H. Chen, H. Wang, Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames. Int. J. Hydrog. Energy (2017)

    Google Scholar 

  25. H.A. Uranakara, S. Chaudhuri, H.L. Dave, P.G. Arias, H.G. Im, A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220–240 (2016)

    Article  Google Scholar 

  26. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36(10), 566–575 (2004)

    Article  Google Scholar 

  27. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion. (RT Edwards, Inc., 2005)

    Google Scholar 

  28. http://pencil-code.nordita.org (2016)

  29. N. Babkovskaia, N.E. Haugen, A. Brandenburg, A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230(1), 1–2 (2011)

    Article  Google Scholar 

  30. S.M. Candel, T.J. Poinsot, Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70(1–3), 1–5 (1990)

    Article  Google Scholar 

  31. C. Altantzis, C.E. Frouzakis, A.G. Tomboulides, K. Boulouchos, Direct numerical simulation of circular expanding premixed flames in a lean quiescent hydrogen-air mixture: phenomenology and detailed flame front analysis. Combust. Flame 162(2), 331–344 (2015)

    Article  Google Scholar 

  32. N. Chakraborty, R.S. Cant, Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 17(6), 065108 (2005)

    Article  Google Scholar 

  33. A.J. Aspden, M.S. Day, J.B. Bell, Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)

    Article  Google Scholar 

  34. H. Carlsson, R. Yu, X.S. Bai, Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20216–20232 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the IITK computer center (www.iitk.ac.in/cc) for providing support to perform the computation work, data analysis, and article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, R., De, A., Gokulakrishnan, S. (2018). Direct Numerical Simulation Study of Lean Hydrogen/Air Premixed Combustion. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics