Skip to main content

Fundamentals of Rate-Controlled Constrained-Equilibrium Method

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The Rate-Controlled Constrained-Equilibrium (RCCE) dimension reduction methodology models complex reacting systems within acceptable accuracy with a number of constraints \(N_c\), much smaller than the number of species \(N_s\), in the corresponding Detailed Kinetics Model (DKM). It describes the time evolution of chemical kinetics systems using a sequence of constrained-equilibrium states specified by the chosen constraints. The comprehensive chemical composition at each constrained-equilibrium state is determined by maximizing entropy (or minimizing Gibbs free energies) given the instantaneous values of the constraints. RCCE guarantees final equilibrium concentrations since Lagrange multipliers of all non-elemental constraints will be zero at final state. In this chapter, RCCE fundamentals, constraint and constraint potential representations, methods of initializing constraint potentials (non-dimensional Lagrange multipliers) as well as a brief discussion of RCCE constraint selection are presented. To show its accuracy against DKM, RCCE method is applied to \({\mathrm{H}_{2}}\)/\({\mathrm{O}_{2}}\) and \({\mathrm{CH}_{4}}\)/\({\mathrm{O}_{2}}\) zero-dimensional, constant energy/volume combustion over a wide range of initial conditions. The results show that both mixture results are in excellent agreement with the DKM predictions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.P. Beretta, M. Janbozorgi, H. Metghalchi, Degree of disequilibrium analysis for automatic selection of kinetic constraints in the Rate-Controlled Constrained-Equilibrium method. Combust. Flame 168, 342–364 (2016)

    Article  Google Scholar 

  2. G.P. Beretta, J.C. Keck, M. Janbozorgi, H. Metghalchi, The Rate-Controlled Constrained-Equilibrium approach to far-from-local-equilibrium thermodynamics. Entropy 14, 92–130 (2012)

    Article  MathSciNet  Google Scholar 

  3. P. Bishnu, D. Hamiroune, M. Metghalchi, Development of constrained equilibrium codes and their applications in nonequilibrium thermodynamics. J. Energy Res. Technol. 123(3), 214–220 (2001)

    Article  Google Scholar 

  4. P. Bishnu, D. Hamiroune, M. Metghalchi, J.C. Keck, Constrained-equilibrium calculations for chemical systems subject to generalized linear constraints using the NASA and STANJAN equilibrium programs. Combust. Theor. Model. 1(3), 295–312 (1997)

    Article  Google Scholar 

  5. M. Bodenstein, S.C. Lind, Geschwingigkeitder bildung des bromwasserstoffs aus seinen elementen. Z. Phys. Chem 57, 168 (1906)

    Google Scholar 

  6. R. Borghi, Turbulent combustion modeling. Prog. Energy Combust. Sci. 14, 245–292 (1988)

    Article  Google Scholar 

  7. A.K. Chatzopoulos, S. Rigopoulos, A chemistry tabulation approach via Rate-Controlled Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), with application to turbulent non-premixed \({{\rm CH}_{4}}/{{\rm H}_{2}}/{{\rm N}_{2}}\) flames. Proc. Combust. Inst. 34(1), 1465–1473 (2013)

    Google Scholar 

  8. E. Chiavazzo, C. Gear, C. Dsilva, N. Rabin, I. Kevrekidis, Reduced models in chemical kinetics via nonlinear data-mining. Processes 2, 112–140 (2014)

    Article  Google Scholar 

  9. E. Chiavazzo, I. Karlin, Adaptive simplification of complex multiscale systems. Phys. Rev. E 83, 036,706 (2011)

    Google Scholar 

  10. A. Doostan, A. Validi, G. Iaccarino, Non-intrusive low-rank separated approximation of high-dimensional stochastic models. Comput. Methods Appl. Mech. Engrg. 263, 42–55 (2013)

    Article  MathSciNet  Google Scholar 

  11. C. Dopazo, E.E. O’Brien, An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1(9–10), 1239–1266 (1974)

    Article  Google Scholar 

  12. S. Fraser, The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988)

    Article  Google Scholar 

  13. A. Gorban, I. Karlin, Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751–4768 (2003)

    Article  Google Scholar 

  14. S. Gordon, B.J. McBride, Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, National Aeronautics and Space Administration (1994)

    Google Scholar 

  15. F. Hadi, M. Janbozorgi, M.R.H. Sheikhi, H. Metghalchi, A study of interactions between mixing and chemical reaction using the Rate-Controlled Constrained-Equilibrium method. J. Non-Equilib. Thermody. 41(4), 257–278 (2016)

    Article  Google Scholar 

  16. F. Hadi, M.R.H. Sheikhi, A comparison of constraint and constraint potential forms of the Rate-Controlled Constrained-Equilibrium method. J. Energy Res. Technol. 138(2), 022,202 (2015)

    Article  Google Scholar 

  17. F. Hadi, V. Yousefian, M.R.H. Sheikhi, H. Metghalchi, A study of the RCCE constraint potential formulation incorporating a constraint selection algorithm, in Proceedings of the 2016 ESSCI Spring Meeting, The Combustion Institute, Princeton, NJ (2016)

    Google Scholar 

  18. F. Hadi, V. Yousefian, M.R.H. Sheikhi, H. Metghalchi, Time scale analysis for rate-controlled constrained-equilibrium constraint selection, in Proceeding of the 10th U.S. National Combustion Meeting of the Combustion Institute, The Combustion Institute, College Park, Maryland (2017)

    Google Scholar 

  19. D. Hamiroune, P. Bishnu, M. Metghalchi, J.C. Keck, Controlled constrained equilibrium method using constraint potentials. Combust. Theory Model. 2(1), 81–94 (1998)

    Article  Google Scholar 

  20. V. Hiremath, S.R. Lantz, H. Wang, S.B. Pope, Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion. Combust. Flame 159(10), 3096–3109 (2012)

    Article  Google Scholar 

  21. V. Hiremath, S.R. Lantz, H. Wang, S.B. Pope, Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry. Proc. Combust. Inst. 34(1), 205–215 (2013)

    Article  Google Scholar 

  22. V. Hiremath, S.B. Pope, A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations. Combust. Theory Model. 17(2), 260–293 (2013)

    Article  MathSciNet  Google Scholar 

  23. V. Hiremath, Z. Ren, S.B. Pope, A greedy algorithm for species selection in dimension reduction of combustion chemistry. Combust. Theory Model. 14(5), 619–652 (2010)

    Article  Google Scholar 

  24. V. Hiremath, Z. Ren, S.B. Pope, Combined dimension reduction and tabulation strategy using ISAT-RCCE-GALI for the efficient implementation of combustion chemistry. Combust. Flame 158(11), 2113–2127 (2011)

    Article  Google Scholar 

  25. M. Janbozorgi, H. Metghalchi, Rate-Controlled Constrained-Equilibrium theory applied to the expansion of combustion products in the power stroke of an internal combustion engine. Int. J. Thermodyn. 12(1), 44–50 (2009)

    Google Scholar 

  26. M. Janbozorgi, H. Metghalchi, Rate-controlled constrained-equilibrium modeling of H/O reacting nozzle flow. J. Propuls. Power 28(4), 677–684 (2012)

    Article  Google Scholar 

  27. M. Janbozorgi, S. Ugarte, H. Metghalchi, J. Keck, Combustion modelling of mono-carbon fuels using the rate-controlled constrained-equilibrium method. Combust. Flame 156(10), 187–1885 (2009)

    Article  Google Scholar 

  28. W.P. Jones, S. Rigopolous, Rate controlled constrained equilibrium: formulation and application of nonpremixed laminar flames. Combust. Flame 142, 223–234 (2005)

    Article  Google Scholar 

  29. W.P. Jones, S. Rigopolous, Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30(1), 1325–1331 (2005)

    Article  Google Scholar 

  30. W.P. Jones, S. Rigopolous, Reduced chemistry for hydrogen and methanol premixed flames via RCCE. Combust. Theory Model. 11, 755–780 (2007)

    Article  Google Scholar 

  31. J.C. Keck, Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems. Prog. Energy Combust. Sci. 16(2), 125–154 (1990)

    Article  Google Scholar 

  32. J.C. Keck, D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures. Combust. Flame 17(2), 237–241 (1971)

    Article  Google Scholar 

  33. J. Kim, S.B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model. 18(3), 388–413 (2014)

    Article  MathSciNet  Google Scholar 

  34. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994)

    Article  Google Scholar 

  35. R. Law, M. Metghalchi, J.C. Keck, Rate-controlled constrained equilibrium calculations of ignition delay times in hydrogen-oxygen mixtures. Proc. Combust. Inst. 22, 1705–1713 (1988)

    Article  Google Scholar 

  36. D. Lebiedz, Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys. 120, 6890–6897 (2004)

    Article  Google Scholar 

  37. T. Løvås, S. Navarro-Martinez, S. Rigopoulos, On adaptively reduced chemistry in large eddy simulations. Proc. Combust. Inst. 33(1), 133–1346 (2011)

    Article  Google Scholar 

  38. L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation. J. Comput. Phys. 228, 361–386 (2009)

    Article  MathSciNet  Google Scholar 

  39. T. Lu, Y. Ju, C. Law, Complex CSP for chemistry reduction and analysis. Combust. Flame 126, 1445–1455 (2001)

    Article  Google Scholar 

  40. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  41. S. Navarro-Martinez, S. Rigopoulos, Large eddy simulation of a turbulent lifted flame using conditional moment closure and rate-controlled constrained equilibrium. Flow Turbul. Combust. 87(2), 407–423 (2011)

    Article  Google Scholar 

  42. G. Nicolas, M. Janbozorgi, H. Metghalchi, Constrained-equilibrium modeling of methane oxidation in air. J. Energy Res. Technol. 136(3), 032,205-1–032,205-7 (2014)

    Google Scholar 

  43. G. Nicolas, H. Metghalchi, Comparison between RCCE and shock tube ignition delay times at low temperatures. J. Energy Res. Technol. 137(6), 062,203-1–062,203-4 (2015)

    Article  Google Scholar 

  44. G. Nicolas, H. Metghalchi, Development of the rate-controlled constrained-equilibrium method for modeling of ethanol combustion. J. Energy Res. Technol. 138, 022,205–1 (2016)

    Article  Google Scholar 

  45. S. Pope, U. Mass, Simplifying chemical kinetics: trajectory-generated low-dimensional manifolds. Technical Report FDA 93-11, Cornell University, Ithaca, NY (1993)

    Google Scholar 

  46. S.B. Pope, Mean field equations in PDF particle methods for turbulent reactive flows. Technical Report FDA 97-06, Cornell University, Ithaca, NY (1997)

    Google Scholar 

  47. S.B. Pope, CEQ: A Fortran library to compute equilibrium compositions using Gibbs function continuation. http://eccentric.mae.cornell.edu/~pope/CEQ (2003)

  48. S.B. Pope, The computation of constrained and unconstrained equilibrium compositions of ideal gas mixtures using Gibbs function contimuation. Cornell University Report FDA 03–02, Cornell University (2003)

    Google Scholar 

  49. S.B. Pope, Gibbs function continuation for the stable computation of chemical equilibrium. Combust. Flame 139(3), 222–226 (2004)

    Article  Google Scholar 

  50. S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34(1), 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  51. J. Rabinovitch, G. Blanquart, Rate-controlled constrained equilibrium for nozzle and shock flows. J. Propuls. Power 33, 776–792 (2017)

    Article  Google Scholar 

  52. V. Raman, H. Pitsch, Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combust. Flame 142, 329–347 (2005)

    Article  Google Scholar 

  53. M. Rein, The partial-equilibrium approximation in reacting flows. Phys. Fluids A 4, 873–886 (1992)

    Article  Google Scholar 

  54. Z. Ren, S. Pope, The geometry of reaction trajectories and attracting manifolds in composition space. Combust. Theory Model. 10, 361–388 (2006)

    Article  MathSciNet  Google Scholar 

  55. Z. Ren, S.B. Pope, A. Vladimirsky, J.M.J. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. J. Chem. Phys. 124, 114,111 (2006)

    Article  Google Scholar 

  56. Z. Ren, S.B. Pope, A. Vladimirsky, J.M.J. Guckenheimer, Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport. Proc. Combust. Inst. 31, 473–481 (2007)

    Article  Google Scholar 

  57. Z. Rena, Z. Lu, Y. Gao, T. Lu, L. Hou, A kinetics-based method for constraint selection in rate-controlled constrained equilibrium. Combust. Theory Model. 21, 159–182 (2017)

    Article  MathSciNet  Google Scholar 

  58. W.C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Stanford University Report ME 270 HO 7, Stanford University (1986)

    Google Scholar 

  59. S. Rigopoulos, T. Løvås, A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames. Proc. Combust. Inst. 32, 569–576 (2009)

    Article  Google Scholar 

  60. M.D. Smooke (ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, vol. 384. Lecture Notes in Physics (Springer, Berlin, Germany, 1991)

    Google Scholar 

  61. Q. Tang, S.B. Pope, Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds. Proc. Combust. Inst. 29(1), 1411–1417 (2002)

    Article  Google Scholar 

  62. Q. Tang, S.B. Pope, A more accurate projection in the rate controlled constrained equilibrium method for dimension reduction of combustion chemistry. Combust. Theory Model. 8, 255–279 (2004)

    Article  MathSciNet  Google Scholar 

  63. S. Ugarte, S. Gao, H. Metghalchi, Application of maximum entropy principle in the analysis of a non-equilibrium chemically reacting mixture. Int. J. Thermodyn. 8(1), 43–53 (2005)

    Google Scholar 

  64. M. Valorani, S. Paolucci, The G-Scheme: a frame work for multi-scale adaptive model reduction. J. Comput. Phys 228, 4665–4701 (2009)

    Article  MathSciNet  Google Scholar 

  65. V. Yousefian, A rate controlled constrained equilibrium thermochemistry algorithm for complex reacting systems. Combust. Flame 115, 66–80 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was made possible by NPRP award 7-252-2-113 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors would like to express their appreciation to Dr. Vreg Yousefian for very helpful discussions regarding constraint potentials initialization and RCCE constraint selection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Hadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadi, F., Yu, G., Metghalchi, H. (2018). Fundamentals of Rate-Controlled Constrained-Equilibrium Method. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics