Skip to main content

On Lean Direct Injection Research

  • Chapter
  • First Online:
Book cover Energy for Propulsion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter reviews and discusses the recent development in Lean Direct Injection (LDI) combustion technology. An extended definition of LDI is also provided, followed by a broad description of LDI concepts and examples. Recognizing the needs and opportunities to expand the operability range of LDI, fundamental research has been undertaken to elucidate the effects of air swirler vane angle, pressure drop, air swirler rotation direction, and overall equivalence ratio on LDI flow field and flame behavior. Additional investigation was further conducted to understand fundamental differences between representative LDI and airblast injectors. Results of these fundamental studies are discussed to help identify design changes for improving LDI performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Mongia, N + 3 and N + 4 generation aeropropulsion engine combustors part 1: large engines’ emissions. ASME Turbo Expo GT2013-94570 (2013)

    Google Scholar 

  2. H.C. Mongia, N + 3 and N + 4 generation aeropropulsion engine combustors part 2: medium size rich-dome engines and lean-domes. ASME Turbo Expo GT2013-94571 (2013)

    Google Scholar 

  3. H.C. Mongia, N + 3 and N + 4 generation aeropropulsion engine combustors part 3: small engine emissions and axial staging combustion technology. ASME Turbo Expo GT2013-94572 (2013)

    Google Scholar 

  4. R.R. Tacina, Low NOx potential of gas turbine engines. AIAA 90-0550 (1990)

    Google Scholar 

  5. J.W. Sanborn, H.C. Mongia, J.R. Kidwell, Design of a low-emission combustor for an automotive gas turbine. AIAA 1983-0338 (1983)

    Google Scholar 

  6. R.R. Tacina, P. Lee, C. Wey, A lean-direct-injection combustor using a 9 point swirl-venturi fuel injector. ISABE 2005-1106 (2005)

    Google Scholar 

  7. K.M. Tacina, D.P. Podboy, Z.J. He, P. Lee, B. Dam, H.C. Mongia, A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. AIAA 2016-4891 (2016)

    Google Scholar 

  8. K.M. Tacina, P. Lee, C. Chang, Z. He, B. Dam, D. Podboy, An assessment of combustion dynamics in a low-NOx second-generation swirl-venturi lean direct injection combustion concept. ISABE 2015-20249 (2015)

    Google Scholar 

  9. ICAO Aircraft Engine Emissions Databank. https://www.easa.europa.eu/easa-and-you/environment/icao-aircraft-engine-emissions-databank

  10. K.S. Im, M.C. Lai, R.R. Tacina, A parametric spray study of the swirler/venturi injectors. AIAA 98-3269 (1998)

    Google Scholar 

  11. H.C. Mongia, Engineering aspects of complex gas turbine combustion mixers part IV: swirl cup. AIAA 2011-5526 (2011)

    Google Scholar 

  12. H.C. Mongia, Engineering aspects of complex gas turbine combustion mixers part III: 30 OPR. AIAA 2011-5525 (2011)

    Google Scholar 

  13. H.C. Mongia, Engineering aspects of complex gas turbine combustion mixers part V: 40 OPR. AIAA 2011-5527 (2011)

    Google Scholar 

  14. C.M. Lee, C. Chang, J.T. Herbon, S.K. Kramer, NASA project develops next generation low-emissions combustor technologies. AIAA 2013-0540 (2013)

    Google Scholar 

  15. P.T. Ross, J.R. Williams, D.N. Anderson, Combustor development for automotive gas turbines. AIAA J. Energy 7, 429–435 (1983)

    Article  Google Scholar 

  16. H.C. Mongia, Engineering aspects of complex gas turbine combustion mixers part II: high T3. AIAA 2011-0106 (2011)

    Google Scholar 

  17. C. Fureby, F.F. Grinstein, G. Li, E.J. Gutmark, An experimental and computational study of a multi-swirl gas turbine combustor. Proc. Combust. Inst. 31, 3107–3114 (2007)

    Article  Google Scholar 

  18. F.F. Grinstein, T.R. Young, E.J. Gutmark, G. Li, G. Hsiao, H.C. Mongia, Flow dynamics in a swirl combustor. J. Turbul. 3(30), 1–19 (2002)

    Google Scholar 

  19. E.J. Gutmark, G. Li, F.F. Grinstein, Characterization of multiswirling flow. Eng. Turbul. Model. Exp. 5, 873–884 (2002)

    Article  Google Scholar 

  20. E.J. Gutmark, S. Verfaillie, J. Bonnet, F. Grinstein, Linear stochastic estimation of a swirling jet. AIAA J 44(3), 457–468 (2006)

    Article  Google Scholar 

  21. G. Li, E.J. Gutmark, Effect of exhaust nozzle geometry on combustor flow field and combustion characteristics. Proc. Combust. Inst. 30, 2893–2901 (2005)

    Article  Google Scholar 

  22. T. Yi, E.J. Gutmark, Combustion instabilities and control of a multiswirl atmospheric combustor. ASME J. Eng. Gas Turbines Power 129(1), 31–37 (2007)

    Article  Google Scholar 

  23. X. Zhou, J.B. Jeffries, R.K. Hanson, G. Li, E.J. Gutmark, Wavelength-scanned tunable diode laser temperature measurements in a model gas turbine combustor. AIAA J 45(2), 420–425 (2007)

    Article  Google Scholar 

  24. H.C. Mongia, Recent progress in comprehensive modeling of gas turbine combustion. AIAA 2008-1445 (2008)

    Google Scholar 

  25. X. Ren, X. Xue, C.J. Sung, K.B. Brady, H.C. Mongia, P. Lee, The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. AIAA 2016-4560 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Xin Xue, Kyle B. Brady, and Xin Hui for their help in the fundamental single-cup experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hukam C. Mongia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, X., Sung, CJ., Mongia, H.C. (2018). On Lean Direct Injection Research. In: Runchal, A., Gupta, A., Kushari, A., De, A., Aggarwal, S. (eds) Energy for Propulsion . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7473-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7472-1

  • Online ISBN: 978-981-10-7473-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics