Skip to main content

Flexible Composite Galois Field \(GF((2^m)^2)\) Multiplier Designs

  • Conference paper
  • First Online:
Book cover VLSI Design and Test (VDAT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 711))

Included in the following conference series:

  • 1479 Accesses

Abstract

Composite Galois Field \(GF((2^m)^n)\) multiplications denote the multiplication with extension field over the ground field \(GF(2^m)\), that are used in cryptography and error correcting codes. In this paper, composite versatile and vector \(GF((2^m)^2)\) multipliers are proposed. The proposed versatile \(GF((2^m)^2)\) multiplier design is used to perform the \(GF((2^x)^2)\) multiplication, where \(2\le x\le m\). The proposed vector \(GF((2^m)^2)\) multiplier design is used to perform \(2^k\) numbers of \(GF((2^{\frac{m}{2^k}})^2)\) multiplications in parallel, where throughput is comparatively higher than other designs and \(k\in \{0, 1, ...(log_{2}m)-1) \}\). In both the works, the hardware cost is the trade-off while the flexibility is high. The proposed and existing multipliers are synthesised and compared using 45 nm CMOS technology. The throughputs of the proposed parallel and serial vector \(GF((2^8)^2)\) multipliers are \(72.7\%\) and \(53.62\%\) greater than Karatsuba based multiplier design [11] respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed Asan Basiri, M., Shukla, S.K.: Hardware optimizations for Crypto Implementations. In: IEEE International Symposium on VLSI Design and Test, pp. 1–6, Guwahati (2016)

    Google Scholar 

  2. Chang, H.-C., Lin, C.-C., Chang, F.-K., Lee, C.-Y.: A universal VLSI architecture for reedsolomon error-and-erasure decoders. IEEE Trans. Circuits Syst. I Regul. Pap. 56(9), 1960–1967 (2009)

    Article  MathSciNet  Google Scholar 

  3. Fu, S.-Z., Lu, B.-X., Pan, Y.-H., Shen, J.-H., Chen, R.-J.: Architecture design of reconfigurable reed solomon error correction codec. In: IEEE International Conference on Advanced Infocomm Technology, Taiwan, pp. 234–235 (2013)

    Google Scholar 

  4. Song, M.K., Won, H.S., Kong, M.H.: Architecture for decoding adaptive Reed-Solomon codes with varying block length. In: IEEE International Conference on Consumer Electronics, pp. 298–299 (2002)

    Google Scholar 

  5. Wang, W., Chen, Z., Huang, X.: Accelerating leveled fully homomorphic encryption using GPU. In: IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, pp. 2800–2803 (2014)

    Google Scholar 

  6. Abu-Khader, N., Siy, P.: Systolic Galois field exponentiation in a multiple-valued logic technique. Integr. VLSI J. 39(3), 229–251 (2006)

    Article  Google Scholar 

  7. Sunar, B., Savas, E., Koc, C.K.: Constructing composite field representations for efficient conversion. IEEE Trans. Comput. 52(11), 1391–1398 (2003)

    Article  MATH  Google Scholar 

  8. Lv, J., Kalla, P., Enescu, F.: Verification of composite Galois field multipliers over \(GF((2^m)^n)\) using computer algebra techniques. In: IEEE International High Level Design Validation and Test Workshop (HLDVT), Santa Clara, pp. 136–143 (2011)

    Google Scholar 

  9. Su, J., Lu, Z.: Parallel structure of \(GF(2^{14})\) and \(GF(2^{16})\) multipliers based on composite finite fields. In: IEEE International Conference on ASIC, Beijing, pp. 768–771 (2011)

    Google Scholar 

  10. Paar, C., Fleischmann, P., Soria-Rodriguez, P.: Fast arithmetic for public-key algorithms in Galois fields with composite exponents. IEEE Trans. Comput. 48(10), 1024–1034 (1999)

    Article  MathSciNet  Google Scholar 

  11. Pontarelli, S., Salsano, A.: On the use of Karatsuba formula to detect errors in \(GF((2^n)^2)\) multipliers. IET Circuits Devices Syst. 6(3), 152–158 (2012)

    Article  Google Scholar 

  12. Casseau, E., Le Gal, B.: Design of multi-mode application-specific cores based on high-level synthesis. Integr. VLSI J. 45, 9–21 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohamed Asan Basiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohamed Asan Basiri, M., Shukla, S.K. (2017). Flexible Composite Galois Field \(GF((2^m)^2)\) Multiplier Designs. In: Kaushik, B., Dasgupta, S., Singh, V. (eds) VLSI Design and Test. VDAT 2017. Communications in Computer and Information Science, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-7470-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7470-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7469-1

  • Online ISBN: 978-981-10-7470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics