Skip to main content

Breeding Applications and Molecular Basis of Semi-dwarfism in Rice

  • Chapter
  • First Online:

Abstract

The green revolution in rice was defined by an unprecedented increase in rice production that saved the world from an impending famine in the 1960s. Driving this revolution was the semi-dwarf 1 (sd1) gene conferring the semi-dwarf phenotype to the rice plant. The shorter stature conferred by sd1 gives the plants resistance to lodging even under heavy doses of nitrogen fertilizer. IR8 carrying sd1, also known as the miracle rice, was the first high-yielding rice variety that came out as a result of intensive research and breeding efforts that capitalize on the use of the semi-dwarf trait to significantly improve rice yield. Although the rice green revolution gene has been used for breeding for decades, the sd1 gene was not identified for a long time. Advancement of rice genomics facilitated the discovery that SD1 encodes the GA biosynthesis gene, GA20ox2. Genome sequencing revealed that several of the varieties used as donor lines in breeding for the semi-dwarf phenotype in rice possess different alleles of sd1. Apart from breeding applications, dwarf mutants have also been instrumental in uncovering the molecular mechanisms underlying gibberellin biosynthesis and signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123:153–160

    Article  CAS  Google Scholar 

  • An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano K, Takashi T, Qian Q, Kitano H, Matsuoka M, Ashikari M (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci 57:53–58

    Article  CAS  Google Scholar 

  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci 108:11034–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Borojevic K, Borojevic K (2005) The transfer and history of “Reduced Height Genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459

    Article  CAS  PubMed  Google Scholar 

  • Chahal GS, Gosal SS (2006) Principles and procedures of plant breeding. Biotechnological and conventional approaches. Alpha Science International Ltd, Harrow. Third reprint, pp 67–70

    Google Scholar 

  • Dalrymple DG (1986) Development and spread of high-yielding rice varieties in developing countries. Bureau for Science and Technology, Agency for International Development, Washington, DC

    Google Scholar 

  • Daviere JM, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20

    Article  CAS  PubMed  Google Scholar 

  • De Datta SK, Tauro AC, Balaoing SN (1968) Effect of plant type and nitrogen level on growth characteristics and grain yield of indica rice in the tropics. Agron J 60:643–647

    Article  Google Scholar 

  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellins control of cell elongation. Nature 451:480–484

    Article  PubMed  Google Scholar 

  • Duncan WG (1971) Leaf angle, leaf area and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis development by light and plant hormone gibberellins. Nature 451:475–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KW, Rutger JN (1978) Inheritance of semi-dwarfism in rice, Oryza sativa L. Genetics 88:559–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Futsuhara Y, Toriyama K, Tsunoda K (1967) Breeding of a new rice variety “Reimei” by gamma-ray irradiation. Jpn J Breed 17:85–90

    Article  Google Scholar 

  • GRiSP Global Rice Science Partnership (2013) Rice Almanac, 4th edn. International Rice Research Institute, Philippines

    Google Scholar 

  • Guimaraes EP (2009) Rice breeding. In: Carena MJ (ed) Cereals. Springer, New York

    Google Scholar 

  • Hargrove TR, Cabanilla VL (1979) The impact of semi-dwarf varieties on Asian rice-breeding program. Bioscience 29:731–735

    Article  Google Scholar 

  • He Z, Li D (1996) Sensitivity of plant height genes to gibberellic acid and their regulation by endogenous plant hormones in rice. Intern Rice Res Notes 21:22–23

    Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453

    CAS  PubMed  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Chang WL, Chang TT (1972) Ponlai varieties and Taichung Native 1. In: Rice breeding. International Rice Research Institute, Los Baños, pp 31–46

    Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Research Institute (1976) Climate and rice. International Rice Research Institute, Los Baños

    Google Scholar 

  • International Rice Research Institute (1985) International rice research: 25 years of partnership. International Rice Research Institute, Los Baños

    Google Scholar 

  • International Rice Research Institute and Chinese Academy of Agricultural Sciences (1980) Rice improvement in China and other Asian countries. International Rice Research Institute, Los Baños

    Google Scholar 

  • Itoh H, Matsuoka M, Steber CM (2003) A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8:492–497

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547

    Article  CAS  PubMed  Google Scholar 

  • Jiang LP, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the lower Yangtze River. China Antiquity 80:355–361

    Article  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Coffman WR, Beachell HM (2001) The history of rice breeding: IRRI’s contribution. In: Rockwood WG (ed) Proceedings of Rice research and production in the 21st century, symposium honoring Robert, F. Chandler Jr. International Rice Research Institute, Los Baños

    Google Scholar 

  • Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Nat Acad Sci USA 103:9578–9583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Nat Acad Sci USA 110:1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo T, Futsuhara Y, Kikuchi F, Yamaguchi H (1997) Science of the rice plant, Genetics, vol 3. Food and Agriculture Policy Research Center, Tokyo, pp 302–303

    Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 28:11–17

    Article  Google Scholar 

  • OECD (2016) A new rural development paradigm for the 21st century: a toolkit developing countries, Development Centre Studies OECD Publishing, Paris. https://doi.org/10.1787/9789264252271-en

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Qian YW, Liu JZ (1993) Rice germplasm resources in Guangdong Province. In: Ying CS (ed) Rice germplasm resources in China. China Agricultural Science and Technology Press, Beijing, p 267

    Google Scholar 

  • Ram M (2014) Plant breeding methods. PHI Learning Private Limited, Delhi

    Google Scholar 

  • Reitz LP, Salmon SC (1968) Origin and use of Norin 10 wheat. Crop Sci 8:686–689

    Article  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  CAS  PubMed  Google Scholar 

  • Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H (2012) DWARF50 (50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. Plant Cell Environ 35:2031–2044

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523

    Article  CAS  PubMed  Google Scholar 

  • Shin DW, Shim YK (1975) The effectiveness of the Tongil rice diffusion in Korea. FAO, Off Rural Dev 1975

    Google Scholar 

  • Smil V (1999) Long-range perspectives on inorganic fertilizers in global agriculture. 1999 Travis P. Hignett lecture. International Fertilizer Development Center, Florence

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Nat Acad Sci USA 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanisaka T, Takemori N, Yabu T, Egashira H, Okumoto Y, Yamagata H (1994) Two useful semidwarf genes in a short-culm mutant line HS90 of rice. Breed Sci 44:397–403

    Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1 and gibberellin. Plant Cell 19:2140–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2006) Defining and identifying crop landraces. Plant Genet Resuscitation 3:373–384

    Article  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, Tada Y, Ohme-Takagi M, Matsuoka M, Ueguchi-Tanaka M (2014) DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci U S A 111:7861–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZL, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO, Lim J, Kamiya Y, Yamaguchi S, Sun TP (2011) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A 108:2160–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Canon Foundation, SATREPS by JICA and JST, a MEXT Grant-in-Aid for Scientific Research on Innovative Areas (Grant 16H01464, 2817H06473), and Core Research for Evolutional Science and Technology by JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Ashikari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagai, K., Hirano, K., Angeles-Shim, R.B., Ashikari, M. (2018). Breeding Applications and Molecular Basis of Semi-dwarfism in Rice. In: Sasaki, T., Ashikari, M. (eds) Rice Genomics, Genetics and Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-10-7461-5_9

Download citation

Publish with us

Policies and ethics