Advertisement

Breeding Applications and Molecular Basis of Semi-dwarfism in Rice

  • Keisuke Nagai
  • Ko Hirano
  • Rosalyn B. Angeles-Shim
  • Motoyuki Ashikari
Chapter

Abstract

The green revolution in rice was defined by an unprecedented increase in rice production that saved the world from an impending famine in the 1960s. Driving this revolution was the semi-dwarf 1 (sd1) gene conferring the semi-dwarf phenotype to the rice plant. The shorter stature conferred by sd1 gives the plants resistance to lodging even under heavy doses of nitrogen fertilizer. IR8 carrying sd1, also known as the miracle rice, was the first high-yielding rice variety that came out as a result of intensive research and breeding efforts that capitalize on the use of the semi-dwarf trait to significantly improve rice yield. Although the rice green revolution gene has been used for breeding for decades, the sd1 gene was not identified for a long time. Advancement of rice genomics facilitated the discovery that SD1 encodes the GA biosynthesis gene, GA20ox2. Genome sequencing revealed that several of the varieties used as donor lines in breeding for the semi-dwarf phenotype in rice possess different alleles of sd1. Apart from breeding applications, dwarf mutants have also been instrumental in uncovering the molecular mechanisms underlying gibberellin biosynthesis and signaling.

Keywords

Dwarfism Green revolution Gibberellin sd1 Rice breeding 

Notes

Acknowledgments

We thank the Canon Foundation, SATREPS by JICA and JST, a MEXT Grant-in-Aid for Scientific Research on Innovative Areas (Grant 16H01464, 2817H06473), and Core Research for Evolutional Science and Technology by JST.

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94CrossRefPubMedGoogle Scholar
  2. Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123:153–160CrossRefGoogle Scholar
  4. An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asano K, Takashi T, Qian Q, Kitano H, Matsuoka M, Ashikari M (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci 57:53–58CrossRefGoogle Scholar
  6. Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci 108:11034–11039CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150CrossRefGoogle Scholar
  8. Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692CrossRefPubMedGoogle Scholar
  10. Borojevic K, Borojevic K (2005) The transfer and history of “Reduced Height Genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459CrossRefPubMedGoogle Scholar
  11. Chahal GS, Gosal SS (2006) Principles and procedures of plant breeding. Biotechnological and conventional approaches. Alpha Science International Ltd, Harrow. Third reprint, pp 67–70Google Scholar
  12. Dalrymple DG (1986) Development and spread of high-yielding rice varieties in developing countries. Bureau for Science and Technology, Agency for International Development, Washington, DCGoogle Scholar
  13. Daviere JM, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20CrossRefPubMedGoogle Scholar
  14. De Datta SK, Tauro AC, Balaoing SN (1968) Effect of plant type and nitrogen level on growth characteristics and grain yield of indica rice in the tropics. Agron J 60:643–647CrossRefGoogle Scholar
  15. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellins control of cell elongation. Nature 451:480–484CrossRefPubMedGoogle Scholar
  16. Duncan WG (1971) Leaf angle, leaf area and canopy photosynthesis. Crop Sci 11:482–485CrossRefGoogle Scholar
  17. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639CrossRefGoogle Scholar
  18. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis development by light and plant hormone gibberellins. Nature 451:475–479CrossRefPubMedPubMedCentralGoogle Scholar
  19. Foster KW, Rutger JN (1978) Inheritance of semi-dwarfism in rice, Oryza sativa L. Genetics 88:559–574PubMedPubMedCentralGoogle Scholar
  20. Futsuhara Y, Toriyama K, Tsunoda K (1967) Breeding of a new rice variety “Reimei” by gamma-ray irradiation. Jpn J Breed 17:85–90CrossRefGoogle Scholar
  21. GRiSP Global Rice Science Partnership (2013) Rice Almanac, 4th edn. International Rice Research Institute, PhilippinesGoogle Scholar
  22. Guimaraes EP (2009) Rice breeding. In: Carena MJ (ed) Cereals. Springer, New YorkGoogle Scholar
  23. Hargrove TR, Cabanilla VL (1979) The impact of semi-dwarf varieties on Asian rice-breeding program. Bioscience 29:731–735CrossRefGoogle Scholar
  24. He Z, Li D (1996) Sensitivity of plant height genes to gibberellic acid and their regulation by endogenous plant hormones in rice. Intern Rice Res Notes 21:22–23Google Scholar
  25. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9CrossRefPubMedGoogle Scholar
  26. Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199CrossRefPubMedGoogle Scholar
  27. Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453PubMedGoogle Scholar
  28. Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894CrossRefPubMedGoogle Scholar
  29. Huang CH, Chang WL, Chang TT (1972) Ponlai varieties and Taichung Native 1. In: Rice breeding. International Rice Research Institute, Los Baños, pp 31–46Google Scholar
  30. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010CrossRefPubMedPubMedCentralGoogle Scholar
  31. International Rice Research Institute (1976) Climate and rice. International Rice Research Institute, Los BañosGoogle Scholar
  32. International Rice Research Institute (1985) International rice research: 25 years of partnership. International Rice Research Institute, Los BañosGoogle Scholar
  33. International Rice Research Institute and Chinese Academy of Agricultural Sciences (1980) Rice improvement in China and other Asian countries. International Rice Research Institute, Los BañosGoogle Scholar
  34. Itoh H, Matsuoka M, Steber CM (2003) A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8:492–497CrossRefPubMedGoogle Scholar
  35. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547CrossRefPubMedGoogle Scholar
  36. Jiang LP, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the lower Yangtze River. China Antiquity 80:355–361CrossRefGoogle Scholar
  37. Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655CrossRefPubMedGoogle Scholar
  38. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822CrossRefPubMedGoogle Scholar
  39. Khush GS, Coffman WR, Beachell HM (2001) The history of rice breeding: IRRI’s contribution. In: Rockwood WG (ed) Proceedings of Rice research and production in the 21st century, symposium honoring Robert, F. Chandler Jr. International Rice Research Institute, Los BañosGoogle Scholar
  40. Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878CrossRefPubMedPubMedCentralGoogle Scholar
  41. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Nat Acad Sci USA 103:9578–9583CrossRefPubMedPubMedCentralGoogle Scholar
  42. Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Nat Acad Sci USA 110:1947–1952CrossRefPubMedPubMedCentralGoogle Scholar
  43. Matsuo T, Futsuhara Y, Kikuchi F, Yamaguchi H (1997) Science of the rice plant, Genetics, vol 3. Food and Agriculture Policy Research Center, Tokyo, pp 302–303Google Scholar
  44. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 28:11–17CrossRefGoogle Scholar
  45. OECD (2016) A new rural development paradigm for the 21st century: a toolkit developing countries, Development Centre Studies OECD Publishing, Paris.  https://doi.org/10.1787/9789264252271-en
  46. Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  47. Qian YW, Liu JZ (1993) Rice germplasm resources in Guangdong Province. In: Ying CS (ed) Rice germplasm resources in China. China Agricultural Science and Technology Press, Beijing, p 267Google Scholar
  48. Ram M (2014) Plant breeding methods. PHI Learning Private Limited, DelhiGoogle Scholar
  49. Reitz LP, Salmon SC (1968) Origin and use of Norin 10 wheat. Crop Sci 8:686–689CrossRefGoogle Scholar
  50. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702CrossRefPubMedGoogle Scholar
  52. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898CrossRefPubMedGoogle Scholar
  53. Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H (2012) DWARF50 (50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. Plant Cell Environ 35:2031–2044CrossRefPubMedGoogle Scholar
  54. Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523CrossRefPubMedGoogle Scholar
  55. Shin DW, Shim YK (1975) The effectiveness of the Tongil rice diffusion in Korea. FAO, Off Rural Dev 1975Google Scholar
  56. Smil V (1999) Long-range perspectives on inorganic fertilizers in global agriculture. 1999 Travis P. Hignett lecture. International Fertilizer Development Center, FlorenceGoogle Scholar
  57. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Nat Acad Sci USA 99:9043–9048CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tanisaka T, Takemori N, Yabu T, Egashira H, Okumoto Y, Yamagata H (1994) Two useful semidwarf genes in a short-culm mutant line HS90 of rice. Breed Sci 44:397–403Google Scholar
  60. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698CrossRefPubMedGoogle Scholar
  61. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1 and gibberellin. Plant Cell 19:2140–2155CrossRefPubMedPubMedCentralGoogle Scholar
  62. Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2006) Defining and identifying crop landraces. Plant Genet Resuscitation 3:373–384CrossRefGoogle Scholar
  63. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251CrossRefPubMedGoogle Scholar
  64. Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, Tada Y, Ohme-Takagi M, Matsuoka M, Ueguchi-Tanaka M (2014) DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci U S A 111:7861–7866CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang ZL, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO, Lim J, Kamiya Y, Yamaguchi S, Sun TP (2011) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A 108:2160–2165CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Keisuke Nagai
    • 1
  • Ko Hirano
    • 1
  • Rosalyn B. Angeles-Shim
    • 2
  • Motoyuki Ashikari
    • 1
  1. 1.Bioscience and Biotechnology CenterNagoya UniversityNagoyaJapan
  2. 2.Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA

Personalised recommendations