Rice Organelle Genomics: Approaches to Genetic Engineering and Breeding

  • Tomohiko Kazama
  • Asuka Nishimura
  • Shin-ichi Arimura
Chapter

Abstract

Although organelle (mitochondria and plastid) genomes have less than 1% of the genes in the nucleus, they encode essential genes, such as those involved in energy production, respiration, and photosynthesis, and genes that control agronomically important characteristics such as cytoplasmic male sterility. Organelle genomes have high copy numbers in each cell (one to two orders of magnitude greater than in the nucleus) and are characterized by maternal inheritance. To know functions of genes encoded in the organelle genomes or to develop new plants adapted to various severe environments, genetic engineering of organelle genomes is one of the promising approaches. However, modifying the mitochondrial or plastid genomes in rice is presently impossible or difficult. Here, we discuss the characteristic features of these genomes and recent attempts at plastid transformation.

Keywords

Mitochondria Plastid Chloroplast Organelle genome 

Notes

Acknowledgments

This work is supported by grants, PRESTO-Sakigake from the Japanese Science and Technology Agency (JPMJPR12B2 to SA) and Kakenhi from the Japanese society for the promotion of Science (16H06182 to TK and 16K14827 to SA).

References

  1. Ahmadabadi M, Ruf S, Bock R (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.) Transgenic Res 16:437–448.  https://doi.org/10.1007/s11248-006-9046-y CrossRefPubMedGoogle Scholar
  2. Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25(1):52–58CrossRefPubMedGoogle Scholar
  3. Asaf S, Khan AL, Khan AR, Waqas M, Kang SM, Khan MA, Shahzad R, Seo CW, Shin JH, Lee IJ (2016) Mitochondrial genome analysis of wild rice (Oryza minuta) and its comparison with other related species. Plos One 11(4):e0152937.  https://doi.org/10.1371/journal.pone.0152937 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asaf S, Waqas M, Khan AL, Khan MA, Kang S-M, Imran QM, Shahzad R, Bilal S, Yun B-W, Lee I-J (2017) The complete chloroplast genome of wild Rice (Oryza minuta) and its comparison to related species. Front Plant Sci 8:1–15.  https://doi.org/10.3389/fpls.2017.00304 CrossRefGoogle Scholar
  5. Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [??]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202.  https://doi.org/10.1093/jxb/erp160 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bellucci M, De Marchis F, Ferradini N, Pompa A, Veronesi F, Rosellini D (2015) A mutant Synechococcus gene encoding glutamate 1-semialdehyde aminotransferase confers gabaculine resistance when expressed in tobacco plastids. Plant Cell Rep 34:2127–2136.  https://doi.org/10.1007/s00299-015-1856-z CrossRefPubMedGoogle Scholar
  7. Bentolila S, Stefanov S (2012) A reevaluation of rice mitochondrial evolution based on the complete sequence of male-fertile and male-sterile mitochondrial genomes. Plant Physiol 158(2):996–1017.  https://doi.org/10.1104/pp.111.190231 CrossRefPubMedGoogle Scholar
  8. Bock R (2007) Towards plastid transformation in maize. News Rep 6:2–5Google Scholar
  9. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846.  https://doi.org/10.1126/science.1204094 CrossRefPubMedGoogle Scholar
  10. Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47.  https://doi.org/10.1023/A:1005825519998 CrossRefPubMedGoogle Scholar
  11. Civáň P, Craig H, Cox CJ, Brown TA (2015) Three geographically separate domestications of Asian rice. Nat Plants 1:15164.  https://doi.org/10.1038/nplants.2015.164 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clarke JL, Daniell H (2011) Plastid biotechnology for crop production: present status and future perspectives. Plant Mol Biol 76:211–220.  https://doi.org/10.1007/s11103-011-9767-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91.  https://doi.org/10.1016/S1360-1385(01)02193-8 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134.  https://doi.org/10.1186/s13059-016-1004-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci U S A 89:7722–7726.  https://doi.org/10.1073/pnas.89.16.7722 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunne A, Maple-Grødem J, Gargano D, Haslam RP, Napier JA, Chua NH, Russell R, Møller SG (2014) Modifying fatty acid profiles through a new cytokinin-based plastid transformation system. Plant J 80:1131–1138.  https://doi.org/10.1111/tpj.12684 CrossRefPubMedGoogle Scholar
  17. Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237PubMedPubMedCentralGoogle Scholar
  18. Fujii S, Kazama T, Yamada M, Toriyama K (2010) Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics 11:209.  https://doi.org/10.1186/1471-2164-11-209 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A 96:14400–14405.  https://doi.org/10.1073/pnas.96.25.14400 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonzalez A, Jimenez A, Vazquez D, Davies JE, Schindler D (1978) Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta 521:459–469CrossRefPubMedGoogle Scholar
  21. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169.  https://doi.org/10.1105/tpc.015966 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanson MR, Gray BN, Ahner BA (2013) Chloroplast transformation for engineering of photosynthesis. J Exp Bot 64:731–742CrossRefPubMedGoogle Scholar
  23. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834.  https://doi.org/10.1038/nprot.2008.46 CrossRefPubMedGoogle Scholar
  24. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. MGG Mol Gen Genet 217:185–194.  https://doi.org/10.1007/BF02464880 CrossRefPubMedGoogle Scholar
  25. Huang X, Han B (2015) Rice domestication occurred through single origin and multiple introgressions. Nat Plants 2:15207.  https://doi.org/10.1038/nplants.2015.207 CrossRefPubMedGoogle Scholar
  26. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501.  https://doi.org/10.1038/nature11532 CrossRefPubMedGoogle Scholar
  27. Igarashi K, Kazama T, Motomura K, Toriyama K (2013) Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. Plant Cell Physiol 54(2):237–243.  https://doi.org/10.1093/pcp/pcs177 CrossRefPubMedGoogle Scholar
  28. International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800.  https://doi.org/10.1038/nature03895 CrossRefGoogle Scholar
  29. Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12(4):1437–1446PubMedPubMedCentralGoogle Scholar
  30. Iwahashi M, Nakazono M, Kanno A, Sugino K, Ishibashi T, Hirai A (1992) Genetic and physical maps and a clone bank of mitochondrial DNA from rice. Theor Appl Genet 84(3-4):275–279.  https://doi.org/10.1007/BF00229482 PubMedGoogle Scholar
  31. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374.  https://doi.org/10.1073/pnas.0709121104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640.  https://doi.org/10.1016/j.tplants.2015.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446.  https://doi.org/10.1111/pbi.12355 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Katayama H, Ogihara Y (1996) Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29:572–581.  https://doi.org/10.1007/s002940050087 CrossRefPubMedGoogle Scholar
  35. Kazama T, Toriyama K (2016) Whole mitochondrial genome sequencing and re-examination of a cytoplasmic male sterility-associated gene in Boro-Taichung-type cytoplasmic male sterile Rice. PLoS One 11(7):e0159379.  https://doi.org/10.1371/journal.pone.0159379 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Khan MS (2012) Plastid genome engineering in plants: present status and future trends. Mol Plant Breed 3:91–102.  https://doi.org/10.5376/mpb.2012.03.0009 Google Scholar
  37. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915.  https://doi.org/10.1038/12907 CrossRefPubMedGoogle Scholar
  38. Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34.  https://doi.org/10.1023/A:1005810616885 CrossRefPubMedGoogle Scholar
  39. Kim K, Lee S-C, Lee J, Yu Y, Yang K, Choi B-S, Koh H-J, Waminal NE, Choi H-I, Kim N-H, Jang W, Park H-S, Lee J, Lee HO, Joh HJ, Lee HJ, Park JY, Perumal S, Jayakodi M, Lee YS, Kim B, Copetti D, Kim S, Kim S, Lim K-B, Kim Y-D, Lee J, Cho K-S, Park B-S, Wing RA, Yang T-J (2015) Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 5:15655.  https://doi.org/10.1038/srep15655 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28.  https://doi.org/10.1016/j.ymben.2011.11.005 CrossRefPubMedGoogle Scholar
  41. Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee S-B, Cheong J-J, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cell 21:401–410. doi: 987 [pii]Google Scholar
  42. Li Y, Sun B, Su N, Meng X, Zhang Z, Shen G (2009) Establishment of a gene expression system in rice chloroplast and obtainment of PPT-resistant rice plants. Agric Sci China 8:643–651.  https://doi.org/10.1016/S1671-2927(08)60259-X CrossRefGoogle Scholar
  43. Li W, Ruf S, Bock R (2011a) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451.  https://doi.org/10.1007/s11103-010-9678-4 CrossRefPubMedGoogle Scholar
  44. Li ZM, Zheng XM, Ge S (2011b) Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet 123:21–31.  https://doi.org/10.1007/s00122-011-1563-2 CrossRefPubMedGoogle Scholar
  45. Li D, Tang N, Fang Z, Xia Y, Cao M (2016a) Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. J Nanosci Nanotechnol 16:12194–12201.  https://doi.org/10.1166/jnn.2016.12949 CrossRefGoogle Scholar
  46. Li D, Tang N, Liu M, Shen C, Hu Y, Xia Y, Cao M (2016b) Using hygromycin phosphotransferase and enhanced green fluorescent protein genes for tracking plastid transformation in Rice (Oryza sativa L.) via gold particle bombardment. Nanosci Nanotechnol Lett 8:409–417.  https://doi.org/10.1166/nnl.2016.2153 CrossRefGoogle Scholar
  47. Liebers M, Grübler B, Chevalier F, Lerbs-Mache S, Merendino L, Blanvillain R, Pfannschmidt T (2017) Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Front Plant Sci 8:23.  https://doi.org/10.3389/fpls.2017.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550.  https://doi.org/10.1038/nature13776 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Londo JP, Chiang Y-C, Hung K, Chiang T, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A 103:9578–9583.  https://doi.org/10.1073/pnas.0603152103 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210.  https://doi.org/10.1104/pp.107.106963 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101:12404–12410.  https://doi.org/10.1073/pnas.0403715101 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510.  https://doi.org/10.1104/pp.110.170969 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci U S A 108:8351–8356.  https://doi.org/10.1073/pnas.1104686108 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333.  https://doi.org/10.1111/j.1467-7652.2010.00558.x CrossRefPubMedGoogle Scholar
  55. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Gen Genomics 268(4):434–445.  https://doi.org/10.1007/s00438-002-0767-1 CrossRefGoogle Scholar
  56. Okazaki M, Kazama T, Murata H, Motomura K, Toriyama K (2013) Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate gene derived from Oryza rufipogon. Plant Cell Physiol 54(9):1560–1568.  https://doi.org/10.1093/pcp/pct102 CrossRefPubMedGoogle Scholar
  57. Pyke K (2007) Plastid biogenesis and differentiation. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 1–28Google Scholar
  58. Rigano MM, Scotti N, Cardi T (2012) Unsolved problems in plastid transformation © 2012 Landes Bioscience. © 2012 Landes Bioscience. Do not distribute. 1–5Google Scholar
  59. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104.  https://doi.org/10.1104/pp.109.152017 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sakai A, Suzuki T, Miyazawa Y, Kawano S, Nagata T, Kuroiwa T (1998) Comparative analysis of plastid gene expression in tobacco chloroplasts and proplastids: relationship between transcription and transcript accumulation. Plant Cell Physiol 39:581–589.  https://doi.org/10.1093/oxfordjournals.pcp.a029408 CrossRefGoogle Scholar
  61. Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590.  https://doi.org/10.1007/s00122-007-0567-4 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Scotti N, Cardi T (2012) Plastid transformation as an expression tool for plant-derived biopharmaceuticals. In: Dunwell JM, Wetten AC (eds) Transgenic plants: methods and protocols, methods in molecular biology. Humana Press, Totowa, pp 451–466CrossRefGoogle Scholar
  63. Shimada H, Sugiura M (1991) Fine-structural features of the chloroplast genome – comparison of the sequenced chloroplast genomes. Nucleic Acids Res 19:983–995.  https://doi.org/10.1093/nar/19.5.983 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24.  https://doi.org/10.1007/s002990050525 CrossRefGoogle Scholar
  65. Silhavy D, Maliga P (1998) Plastid promoter utilization in a rice embryogenic cell culture. Curr Genet 34:67–70.  https://doi.org/10.1007/s002940050367 CrossRefPubMedGoogle Scholar
  66. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A 98(9):5099–5103.  https://doi.org/10.1073/pnas.091110398 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530.  https://doi.org/10.1073/pnas.87.21.8526 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tian X, Zheng J, Hu S, Yu J (2006) The rice mitochondrial genomes and their variations. Plant Physiol 140(2):401–410.  https://doi.org/10.1104/pp.105.070060 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tong W, Kim T-S, Park Y-J (2016) Rice chloroplast genome variation architecture and phylogenetic dissection in diverse Oryza species assessed by whole-genome resequencing. Rice (N Y) 9:57.  https://doi.org/10.1186/s12284-016-0129-y CrossRefGoogle Scholar
  70. Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15(1):57–61.  https://doi.org/10.1038/ng0197-57 CrossRefPubMedGoogle Scholar
  71. Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408.  https://doi.org/10.1016/j.plantsci.2008.01.016 CrossRefGoogle Scholar
  72. Vera A, Sugiura M (1995) Chloroplast rRNA transcription from structurally different tandem promoters: an additional novel-type promoter. Curr Genet 27:280–284.  https://doi.org/10.1007/BF00326161 CrossRefPubMedGoogle Scholar
  73. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143.  https://doi.org/10.1104/pp.107.106690 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.) Mol Gen Genomics 272:504–511.  https://doi.org/10.1007/s00438-004-1069-6 CrossRefGoogle Scholar
  75. Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957.  https://doi.org/10.1038/srep13957 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M, Kim W, Sanchez P, Ndjiondjop M-N, Sanni K, Long M, Carney J, Panaud O, Wicker T, Machado CA, Chen M, Mayer KFX, Rounsley S, Wing RA (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988.  https://doi.org/10.1038/ng.3044 CrossRefPubMedGoogle Scholar
  77. Wani SH, Sah SK, Sági L, Solymosi K (2015) Transplastomic plants for innovations in agriculture. A review. Agron Sustain Dev 35:1391–1430.  https://doi.org/10.1007/s13593-015-0310-5 CrossRefGoogle Scholar
  78. Waters DLE, Nock CJ, Ishikawa R, Rice N, Henry RJ (2012) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol 2:211–217.  https://doi.org/10.1002/ece3.66 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383.  https://doi.org/10.1146/annurev.genet.40.110405.090451 CrossRefPubMedGoogle Scholar
  80. Xu JH, Liu Q, Hu W, Wang T, Xue Q, Messing J (2015) Dynamics of chloroplast genomes in green plants. Genomics 106:221–231.  https://doi.org/10.1016/j.ygeno.2015.07.004 CrossRefPubMedGoogle Scholar
  81. Yang CC, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471–1479.  https://doi.org/10.1093/molbev/msr315 CrossRefPubMedGoogle Scholar
  82. Yu Q, Lutz KA, Maliga P (2017) Efficient plastid transformation in arabidopsis. Plant Physiol 175(1):186–193CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang TW, Hu SN, Zhang GY, Pan LL, Zhang XW, Al-Mssallem IS, Yu J (2012) The organelle genomes of hassawi rice (Oryza sativa L.) and its hybrid in Saudi Arabia: genome variation, rearrangement, and origins. Plos One 7(7):e42041.  https://doi.org/10.1371/journal.pone.0042041 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991. LP-994CrossRefPubMedGoogle Scholar
  85. Zhang B, Shanmugaraj B, Daniell H (2017) Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol 38:17–23.  https://doi.org/10.1016/j.cbpa.2017.02.007 CrossRefPubMedGoogle Scholar
  86. Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265.  https://doi.org/10.1111/j.1469-8137.2005.01406.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tomohiko Kazama
    • 1
  • Asuka Nishimura
    • 2
  • Shin-ichi Arimura
    • 2
  1. 1.Laboratory of Environmental Plant Biotechnology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.Laboratory of Plant Molecular Genetics, Graduate School of Agricultural & Life ScienceThe University of TokyoTokyoJapan

Personalised recommendations