Rice Genome Editing

Chapter

Abstract

Recently developed methods for genome editing have the potential to accelerate basic research as well as plant breeding by providing the means to modify genomes rapidly in a precise or predictable manner. Sequence-specific nucleases (SSNs) induce targeted DNA double-strand breaks (DSBs), and different genome modifications can be achieved depending on the repair pathway. Non-homologous end-joining (NHEJ) repair creates mainly insertions or deletions (in/dels) at the break sites, which can result in frameshift mutations. Such NHEJ-mediated gene modification is called targeted mutagenesis. On the other hand, when a template with homology to the sequence surrounding the DSB is available, DNA DSBs can be repaired by homologous recombination (HR) repair. Such template-mediated HR achieves gene targeting (GT); GT can be used to introduce any desired mutation because the sequence supplied on the repair template is copied and pasted into the endogenous genome. In this chapter, we provide an overview of recent advances in genome-editing technologies in rice.

Keywords

Sequence-specific nuclease CRISPR/Cas9 Gene targeting DNA double-strand breaks Homologous recombination Non-homologous end-joining 

Notes

Acknowledgments

This work was supported by the Cross-ministerial Strategic Innovation Promotion Program to M.E., A.N-Y., and S.T. and grants from the Japan Science and Technology Agency “Precursory Research for Embryonic Science and Technology” to A.N-Y (JPMJPR16QA).

References

  1. Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, Tanaka K (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17(1):979CrossRefPubMedPubMedCentralGoogle Scholar
  2. Armstrong GA, Liao M, You Z, Lissouba A, Chen BE, Drapeau P (2016) Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One 11(3):e0150188CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941CrossRefPubMedGoogle Scholar
  5. Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 95:10570–10575CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512CrossRefPubMedGoogle Scholar
  7. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169CrossRefPubMedGoogle Scholar
  9. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4):497–510CrossRefPubMedGoogle Scholar
  11. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548CrossRefPubMedGoogle Scholar
  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dang TT, Shimatani Z, Kawano Y, Terada R, Shimamoto K (2013) Gene editing; a constitutively active OsRac1 by homologous recombination based gene targeting induces immune responses in rice. Plant Cell Physiol 54(12):2058–2070CrossRefPubMedGoogle Scholar
  14. de Oliveira ML, Stover E, Thomson JG (2015) The codA gene as a negative selection marker in citrus. Springer Plus 17(4):264CrossRefGoogle Scholar
  15. Endo M, Osakabe K, Ichikawa H, Toki S (2006) Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Plant Cell Physiol 47(3):372–379CrossRefPubMedGoogle Scholar
  16. Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52(1):157–166CrossRefPubMedGoogle Scholar
  17. Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47CrossRefPubMedGoogle Scholar
  18. Endo A, Masafumi M, Kaya H, Toki S (2016a) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169CrossRefPubMedPubMedCentralGoogle Scholar
  19. Endo M, Mikami M, Toki S (2016b) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677CrossRefPubMedGoogle Scholar
  20. Endo M, Nishizawa-Yokoi A, Toki S (2016c) Targeted mutagenesis in rice using TALENs and the CRISPR/Cas9 system. Methods Mol Biol 1469:123–135CrossRefPubMedGoogle Scholar
  21. Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109(19):7535–7540CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359CrossRefPubMedGoogle Scholar
  23. Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89(6):1251–1262CrossRefPubMedGoogle Scholar
  24. Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6(2):157–162CrossRefPubMedGoogle Scholar
  25. Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28(6):671–677CrossRefPubMedGoogle Scholar
  26. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20(6):575–580CrossRefPubMedGoogle Scholar
  27. Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP (2008) A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A 105(41):15848–15853CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  29. Kawahara A, Hisano Y, Ota S, Taimatsu K (2016) Site-specific integration of exogenous genes using genome editing technologies in zebrafish. Int J Mol Sci 17(5) pii: E727Google Scholar
  30. Kaya H, Mikami M, Endo A, Endo M, Toki S (2016) Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep 6:26871CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2015) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495CrossRefGoogle Scholar
  32. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cell 38(6):475–481CrossRefGoogle Scholar
  34. Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (1999) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J 19(6):719–726CrossRefPubMedGoogle Scholar
  35. Kwon YI, Abe K, Osakabe K, Endo M, Nishizawa-Yokoi A, Saika H, Shimada H, Toki S (2012) Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice. Plant Cell Physiol 53(12):2142–2152CrossRefPubMedGoogle Scholar
  36. Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B, Gronenborn B (1990) Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci U S A 87(19):7752–7756CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496CrossRefPubMedGoogle Scholar
  38. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392CrossRefPubMedGoogle Scholar
  39. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 18(8):14261CrossRefGoogle Scholar
  41. Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985CrossRefPubMedPubMedCentralGoogle Scholar
  42. Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, Coffman A, Retterath A, Mathis L, Voytas DF, Zhang F (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8(9):1425–1427CrossRefPubMedGoogle Scholar
  43. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352CrossRefPubMedGoogle Scholar
  45. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mikami M, Toki S, Endo M (2015) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88(6):561–572CrossRefPubMedPubMedCentralGoogle Scholar
  47. Moritoh S, Eun CH, Ono A, Asao H, Okano Y, Yamaguchi K, Shimatani Z, Koizumi A, Terada R (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71(1):85–98CrossRefPubMedGoogle Scholar
  48. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501CrossRefPubMedGoogle Scholar
  49. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123CrossRefPubMedGoogle Scholar
  50. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305)Google Scholar
  52. Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196(4):1048–1059CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nishizawa-Yokoi A, Nonaka S, Osakabe K, Saika H, Toki S (2015a) A universal positive-negative selection system for gene targeting in plants combining an antibiotic resistance gene and its antisense RNA. Plant Physiol 169(1):362–370CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nishizawa-Yokoi A, Endo M, Ohtsuki N, Saika H, Toki S (2015b) Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. Plant J 81(1):160–168CrossRefPubMedGoogle Scholar
  55. Nishizawa-Yokoi A, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, Voytas DF, Toki S (2016a) A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol 170(2):653–666CrossRefPubMedGoogle Scholar
  56. Nishizawa-Yokoi A, Endo M, Osakabe K, Saika H, Toki S (2016b) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77(3):454–463CrossRefGoogle Scholar
  57. Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, Iida S (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71(4):564–574CrossRefPubMedGoogle Scholar
  58. Osakabe K, Nishizawa-Yokoi A, Ohtsuki N, Osakabe Y, Toki S (2014) A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice. Plant Cell Physiol 55:658–665CrossRefPubMedGoogle Scholar
  59. Perera RJ, Linard CG, Signer ER (1993) Cytosine deaminase as a negative selective marker for Arabidopsis. Plant Mol Biol 23(4):793–799CrossRefPubMedGoogle Scholar
  60. Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48(1–2):173–182CrossRefPubMedGoogle Scholar
  61. Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rivera-Torres N, Banas K, Bialk P, Bloh KM, Kmiec EB (2017) Insertional mutagenesis by CRISPR/Cas9 ribonucleoprotein gene editing in cells targeted for point mutation repair directed by short single-stranded DNA oligonucleotides. PLoS One 12(1):e0169350CrossRefPubMedPubMedCentralGoogle Scholar
  64. Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156(3):1269–1277CrossRefPubMedPubMedCentralGoogle Scholar
  65. Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12(3):697–701CrossRefPubMedGoogle Scholar
  66. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800CrossRefPubMedGoogle Scholar
  67. Shao M, Michno JM, Hotton SK, Blechl A, Thomson J (2015) A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max. Plant Cell Rep 34(10):1707–1716CrossRefPubMedGoogle Scholar
  68. Shen B, Zhang X, Du Y, Wang J, Gong J, Zhang X, Tate PH, Li H, Huang X, Zhang W (2013) Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes. PLoS One 8(10):e77696CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443CrossRefPubMedGoogle Scholar
  70. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88CrossRefPubMedGoogle Scholar
  71. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J (2016) RS-1 enhances CRISPR/Cas9-and TALEN-mediated knock-in efficiency. Nat Commun 7:10548CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53CrossRefPubMedGoogle Scholar
  73. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149CrossRefPubMedPubMedCentralGoogle Scholar
  74. Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274CrossRefPubMedPubMedCentralGoogle Scholar
  75. Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H (2017) Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res 45(9):5198–5207CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K (2015) FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci U S A 112(8):E901–E910CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018CrossRefPubMedGoogle Scholar
  78. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20(10):1030–1034CrossRefPubMedGoogle Scholar
  79. Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 144(2):846–856CrossRefPubMedPubMedCentralGoogle Scholar
  80. Terada R, Nagahara M, Furukawa K, Shimamoto M, Yamaguchi K, Iida S (2010) Cre-lox mediated marker elimination and gene reactivation at waxy locus created in the rice genome based on strong positive-negative selection. Plant Biotechnol 27:29–37CrossRefGoogle Scholar
  81. Wang K, Tang X, Liu Y, Xie Z, Zou X, Li M, Yuan H, Ouyang H, Jiao H, Pang D (2016) Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Mol Ther Nucleic Acids 5(11):e396CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang L, Yang L, Guo Y, Du W, Yin Y, Zhang T, Lu H (2017a) Enhancing targeted genomic DNA editing in chicken cells using the CRISPR/Cas9 system. PLoS One 12(1):e0169768CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu ZK (2017b) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant S1674-2052(17):30072–30072Google Scholar
  84. Woo HJ, Suh SC, Cho YG (2011) Strategies for developing marker-free transgenic plants. Biotechnol Bioprocess Eng 16(6):1053–1064CrossRefGoogle Scholar
  85. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164CrossRefPubMedGoogle Scholar
  86. Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60(2):386–396CrossRefPubMedGoogle Scholar
  87. Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S (2014) The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Mol Biol 85(3):219–232CrossRefPubMedGoogle Scholar
  88. Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yun MH, Hiom K (2009) CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459(7245):460–463CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yusa K (2015) piggyBac transposon. Microbiol Spectr 3(2):MDNA3-0028-2014CrossRefPubMedGoogle Scholar
  91. Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14(1):186–194CrossRefPubMedGoogle Scholar
  92. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9- cytidine deaminase fusion. Nat Biotechnol.  https://doi.org/10.1038/nbt.3811

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masaki Endo
    • 1
  • Ayako Nishizawa-Yokoi
    • 1
    • 2
  • Seiichi Toki
    • 1
    • 3
    • 4
  1. 1.Plant Genome Engineering Research UnitNARO Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization (NARO)TsukubaJapan
  2. 2.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology AgencyKawaguchiJapan
  3. 3.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
  4. 4.Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan

Personalised recommendations