Marker-Assisted Gene Pyramiding for Durable Resistance to Blast



Effective control of blast, a devastating fungal disease of rice caused by Pyricularia oryzae, is an important breeding objective to increase and stabilize worldwide rice production. Use of quantitative resistance to blast is considered a promising strategy because such resistance is more durable than race-specific qualitative resistance. Quantitative resistance is under complex genetic control, with each contributing gene having a smaller individual effect than those conveying qualitative resistance. This characteristic decreases selection pressure, thereby slowing the counter-evolution of the pathogen, but also makes it difficult for breeders to select the required traits in practical breeding programs. Extensive genetic studies of quantitative resistance during the last two decades have identified several relevant genes and have contributed to our understanding of the genetic control of quantitative resistance. Such studies will accelerate marker-assisted gene pyramiding of resistance alleles to confer strong, non-race-specific, and environmentally stable resistance to blast disease; this achievement would contribute substantially to global food security.


Quantitative resistance Partial resistance Quantitative trait loci Durable resistance Marker-assisted selection Gene pyramiding Rice Blast disease 



The author thanks the collaborators of the works presented in this review. Most works presented were supported by grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (MP1103b, MP1132, QT4002, QT4003, QT4004, QTL2002, RGB1101, GB1004, and LCT0013).


  1. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276Google Scholar
  2. Ashizawa T, Moriwaki J, Hirayae K (2015) Development of a simulator of the rice blast race dynamics in multiline. Bull NARO Agric Res Cent 24:15–29 (In Japanese with English summary)Google Scholar
  3. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36:353–367CrossRefPubMedGoogle Scholar
  4. Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H (2005) Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Eng 44:2852–2869CrossRefGoogle Scholar
  5. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe In 21:859–868CrossRefGoogle Scholar
  6. Bonman JM, Khush GS, Nelson RJ (1992) Breeding rice for resistance to pests. Annu Rev Phytopathol 30:507–528CrossRefGoogle Scholar
  7. Brown JK (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344CrossRefPubMedGoogle Scholar
  8. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705CrossRefPubMedGoogle Scholar
  10. Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804CrossRefPubMedGoogle Scholar
  12. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986CrossRefPubMedGoogle Scholar
  13. Endo T, Yamaguchi M, Kaji R, Nakagomi K, Kataoka T, Yokogami N, Nakamura T, Ishikawa G, Yonemaru J, Nishio T (2012) Close linkage of a blast resistance gene, Pias(t), with a bacterial leaf blight resistance gene, Xa1-as(t), in a rice cultivar ‘Asominori’. Breed Sci 62:334–339CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ezuka A (1972) Field resistance of rice varieties to rice blast disease. Rev Plant Prot Res 5:1–21Google Scholar
  15. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  16. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujii K, Hayano-Saito Y (2007) Genetics of durable resistance to rice panicle blast derived from an indica rice variety Modan. Jpn J Plant Sci 1:69–76Google Scholar
  18. Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M (2000) Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breed Sci 50:183–188CrossRefGoogle Scholar
  19. Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190CrossRefGoogle Scholar
  20. Fukuoka S, Mizobuchi R, Yamamoto S-I, Yano M (2008) Rice blast field resistance gene pi21 enhances early responsiveness to virulent blast pathogen. Breed Res 10:37Google Scholar
  21. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001CrossRefPubMedGoogle Scholar
  22. Fukuoka S, Mizobuchi R, Saka N, Suprun I, Ivan S, Matsumoto T, Okuno K, Yano M (2012) A multiple gene complex on rice chromosome 4 is involved in durable resistance to rice blast. Theor Appl Genet 125:551–559CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4450Google Scholar
  24. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5:7773Google Scholar
  25. Goto I (1988) Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopath Soc 54:460–465CrossRefGoogle Scholar
  26. Hashioka Y (1985) Effects of environmental factors on development of causal fungus, infection, disease development, and epidemiology in rice blast disease. In: The rice blast disease Proceedings of a symposium at the International Rice Research Institute, 1963. Johns Hopkins Press, Baltimore, pp 153–161Google Scholar
  27. Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510CrossRefPubMedGoogle Scholar
  28. He X, Liu X, Wang L, Wang L, Lin F, Cheng Y, Chen Z, Liao Y, Pan Q (2012) Identification of the novel recessive gene pi55(t) conferring resistance to Magnaporthe oryzae. Sci China Life Sci 55:141–149CrossRefPubMedGoogle Scholar
  29. Hirabayashi H, Sato H, Nonoue Y, Kuno-Takemoto Y, Takeuchi Y, Kato H, Nemoto H, Ogawa T, Yano M, Imbe T, Ando I (2010) Development of introgression lines derived from Oryza rufipogon and O. glumaepatula in the genetic background of japonica cultivated rice (O. sativa L.) and evaluation of resistance to rice blast. Breed Sci 60:604–612CrossRefGoogle Scholar
  30. Hori K, Kataoka T, Miura K, Yamaguchi M, Saka N, Nakahara T, Sunohara Y, Ebana K, Yano M (2012) Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice. Breed Sci 62:223–234CrossRefPubMedPubMedCentralGoogle Scholar
  31. Inoue H, Hayashi N, Matsushita A, Liu XQ, Nakayama A, Sugano S, Jiang CJ, Takatsuji H (2013) Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. P Natl Acad Sci USA 110:9577–9582CrossRefGoogle Scholar
  32. Inoue H, Nakamura M, Mizubayashi T, Fukuoka S, Hayashi N (2017) Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome. Rice 10:36Google Scholar
  33. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  34. Kato T, Endo I, Yano M, Sasaki T, Inoue M, Kudo S (2002) Mapping of quantitative trait loci for field resistance to rice blast in upland rice, ‘Sensho’ (in Japanese). Breed Res 3:119–124CrossRefGoogle Scholar
  35. Kawahara Y, Mdl B, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kito H, Zenbayashi-Sawata K (2012) Mapping and complementation test of Pi34 gene candidates. Jpn J Phytopathol 78:224Google Scholar
  37. Kiyosawa S (1982) Genetic and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol 20:93–117CrossRefGoogle Scholar
  38. Kiyosawa S (1989) Disease resistance 2 –blast disease. Kodansha Scientific, TokyoGoogle Scholar
  39. Koide Y, Kobayashi N, Xu D, Fukuta Y (2009) Resistance genes and selection DNA markers for blast disease in rice (Oryza sativa L.) Jarq-Jpn Agr Res Q 43:255–280CrossRefGoogle Scholar
  40. Koizumi S, Fuji S (1995) Variation of field resistance to leaf blast in a rice strain, Chubu 32, due to isolates of the pathogen. Res Bull Aichi Agric Res 27:85–93Google Scholar
  41. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  42. Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two CC-NB-LRR genes. Genetics 181:1627–1638CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liang ZJ, Wang L, Pan QH (2016) A new recessive gene conferring resistance against rice blast. Rice 9:1–6CrossRefGoogle Scholar
  44. Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu XQ, Inoue H, Hayashi N, Jiang CJ, Takatsuji H (2016) CC-NBS-LRR-type R proteins for rice blast commonly interact with specific WRKY transcription factors. Plant Mol Biol Rep 34:533–537CrossRefGoogle Scholar
  46. Maeda S, Hayashi N, Sasaya T, Mori M (2016) Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice. Breed Sci 66:396–406CrossRefPubMedPubMedCentralGoogle Scholar
  47. Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H (2013) Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J 73:302–313CrossRefPubMedGoogle Scholar
  48. Matsuyama N, Dimond AE (1973) Effect of nitrogenous fertilizer on biochemical processes that could affect lesion size of rice blast. Phytopathology 63:1202–1203CrossRefGoogle Scholar
  49. McCouch SR, Nelson RJ, Tohme J, Zeigler RS (1994) Mapping of blast resistance genes in rice. C.A.B. International, WallingfordGoogle Scholar
  50. McCouch SR, Zhao KY, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535CrossRefGoogle Scholar
  51. Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130CrossRefPubMedGoogle Scholar
  52. Miyamoto M, Yano M, Hirasawa H (2001) Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety. Kahei Breed Sci 54:257–261CrossRefGoogle Scholar
  53. Mizobuchi R, Sato H, Fukuoka S, Yamamoto S, Kawasaki-Tanaka A, Fukuta Y (2014) Mapping of a QTL for field resistance to blast (Pyricularia oryzae Cavara) in Ingngoppor-tinawon, a rice (Oryza sativa L.) landrace from the Philippines. Jarq-Jpn Agr Res Q 48:425–431CrossRefGoogle Scholar
  54. Morimoto T (1980) Breeding by Chinese upland rice Sensho. (in Japanese). In: Yamasaki Y, Kozaka T (eds) Rice blast disease and breeding for resistance to blast. Hakuyusha, Tokyo, pp 25–34Google Scholar
  55. Muller KO, Haigh JC (1953) Nature of field resistance of the potato to Phytophthora infestans De Bary. Nature 171:781–783CrossRefPubMedGoogle Scholar
  56. Nakao M, Nakamura R, Kita K, Inukai R, Ishikawa A (2011) Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci Rep-UK 1:171CrossRefGoogle Scholar
  57. Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P (2013) Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC Plant Biol 13:106CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nguyen TT, Koizumi S, La TN, Zenbayashi KS, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A (2006) Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113:697–704CrossRefPubMedGoogle Scholar
  59. Ohata K, Goto K, Kozaka T (1966) Effect of low air temperature on the susceptibility of rice plants to blast disease, with special reference to some chemical components in the plants. Bull Natl Inst Agric Sci 20:1–65 (In Japanese with English summary)Google Scholar
  60. Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479CrossRefPubMedGoogle Scholar
  61. Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894CrossRefPubMedPubMedCentralGoogle Scholar
  62. Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annu Rev Phytopathol 17:203–222CrossRefGoogle Scholar
  63. Pawson T (1995) Protein modules and signalling networks. Nature 373:573–580CrossRefPubMedGoogle Scholar
  64. Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430:887–891CrossRefPubMedGoogle Scholar
  65. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29CrossRefPubMedGoogle Scholar
  66. Sasaki R (1923) Existence of strains in rice blast fungus II. J Plant Protect 10:1–10Google Scholar
  67. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shumiya A (2002) Breeding new paddy rice varieties and development of multiple resitance breeding method [in Japanese]. J Agric Sci 57:102–105Google Scholar
  69. Sun XL, Cao YL, Yang ZF, Xu CG, Li XH, Wang SP, Zhang QF (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527CrossRefPubMedGoogle Scholar
  70. Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175CrossRefPubMedPubMedCentralGoogle Scholar
  71. Takehisa H, Yasuda M, Fukuta Y, Kobayashi N, Hayashi N, Nakashita H, Abe T, Sato T (2009) Genetic analysis of resistance genes in an Indica-type rice (Oryza sativa L.), Kasalath, using DNA markers. Breed Sci 59:253–260CrossRefGoogle Scholar
  72. Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390CrossRefPubMedGoogle Scholar
  73. Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRefPubMedGoogle Scholar
  75. Terashima T, Fukuoka S, Saka N, Kudo S (2008) Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed 127:485–489CrossRefGoogle Scholar
  76. Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222:9–19CrossRefPubMedGoogle Scholar
  77. Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H (2015) Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLoS Pathog 11:e1005231CrossRefPubMedPubMedCentralGoogle Scholar
  78. Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New YorkGoogle Scholar
  79. van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191CrossRefPubMedGoogle Scholar
  80. Van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397CrossRefPubMedGoogle Scholar
  81. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434PubMedPubMedCentralGoogle Scholar
  82. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530CrossRefPubMedGoogle Scholar
  83. Xiao N, Wu YY, Pan CH, Yu L, Chen Y, Liu GQ, Li YH, Zhang XX, Wang ZP, Dai ZY, Liang CZ, Li AH (2017) Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci 7:1918CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu X, Chen H, Fujimura T, Kawasaki S (2008) Fine mapping of a strong QTL of field resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor Appl Genet 117:997–1008CrossRefPubMedGoogle Scholar
  85. Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed 34:691–700CrossRefGoogle Scholar
  86. Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153CrossRefPubMedGoogle Scholar
  89. Yasuda N, Zenbayashi-Sawata K, Fujita Y (2008) Identification of an avirulence gene in Magnaporthe oryzae which controls avirulence to the resistance rice cultivar ‘Hokkai188’ [in Japanese]. Ann Phytopathol Soc Jpn 74:191Google Scholar
  90. Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujita Y (2015) Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Dis 99:904–909CrossRefGoogle Scholar
  91. Yunoki T, Ezuka A, Morinaka T, Sakurai Y (1970) Studies on the varietal resistance to Rice blast. 4. Variation of field resistance due to fungus strains. Bull Chugoku Agric Exp Stn Ser A 6:21–41Google Scholar
  92. Zenbayashi K, Ashizawa T, Tani T, Koizumi S (2002) Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet 104:547–552CrossRefPubMedGoogle Scholar
  93. Zenbayashi-Sawata K, Ashizawa T, Koizumi S (2005) Pi34-AVRPi34: a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. J Gen Plant Pathol 71:395–401CrossRefGoogle Scholar
  94. Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S (2007) Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice. Phytopathology 97:598–602CrossRefPubMedGoogle Scholar
  95. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhu Y, Qian WQ, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Crop Science, NAROIbarakiJapan

Personalised recommendations