Pathogen Recognition and Immune Signaling

Chapter

Abstract

Rice blast and bacterial blight, two important rice diseases, are caused by infection with a fungal pathogen Magnaporthe oryzae and a bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), respectively. Recent studies on the interaction between rice and these pathogens provided important knowledges of the molecular mechanisms of rice immune responses such as receptor-mediated pathogen recognition, host immune signaling, and pathogen effector-mediated susceptibility. So far, many disease resistance (R) genes have been genetically identified based upon disease resistance traits against M. oryzae and Xoo. Most rice blast R genes isolated to date encode pathogen recognition receptors. In contrast, the majority of bacterial blight R genes are involved in transcriptional regulation of host resistance or susceptibility factors. Genetic and biochemical studies of rice immune signaling have identified important immune factors including OsRac1, OsRLCK185, and WRKY45. Identification of rice factors that interact with OsRac1, OsRLCK185, and WRKY45 revealed the molecular mechanisms of a variety of immune responses, including the expression of defense-related genes, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinase (MAPK), and lignification.

Keywords

Disease resistance gene Pattern recognition receptor NB-LRR receptor Pathogen effector GTPase RLCK MAPK Reactive oxygen species Lignification WRKY 

Notes

Acknowledgments

We apologize to colleagues whose work could not be cited because of space limitations. Work on immune signaling in the Kawasaki Laboratory is funded by Grants-in-Aid for Scientific Research (A)(JP15H02489), for Scientific Research on Innovative Areas (JP15H01242 and JP16H01474).

References

  1. Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13(4):465–476CrossRefPubMedGoogle Scholar
  2. Akamatsu A, Uno K, Kato M, Wong HL, Shimamoto K, Kawano Y (2015) New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice. Plant Signal Behav 10(7):e1044702PubMedPubMedCentralGoogle Scholar
  3. Ao Y, Li Z, Feng D, Xiong F, Liu J, Li JF, Wang M, Wang J, Liu B, Wang HB (2014) OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J 80(6):1072–1084CrossRefPubMedGoogle Scholar
  4. Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33(17):1941–1959CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K (2010a) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7(3):185–196CrossRefPubMedGoogle Scholar
  6. Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K (2010b) Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol 51(4):585–595CrossRefPubMedGoogle Scholar
  7. Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC (2010c) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci U S A 107(17):8029–8034CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ, Heazlewood JL, Ronald PC (2014) An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 7(5):874–892CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y, Djonovic S, Millet Y, Bush J, McConkey BJ, Sheen J, Ausubel FM (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521(7551):213–216CrossRefPubMedPubMedCentralGoogle Scholar
  10. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16(9):537–552CrossRefPubMedGoogle Scholar
  11. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341(6147):746–751CrossRefPubMedGoogle Scholar
  12. Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Kawasaki T, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285(15):11308–11313CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001CrossRefPubMedGoogle Scholar
  14. Goto S, Sasakura-Shimoda F, Yamazaki M, Hayashi N, Suetsugu M, Ochiai H, Takatsuji H (2016) Development of disease-resistant rice by pathogen-responsive expression of WRKY45. Plant Biotechnol J 14(4):1127–1138CrossRefPubMedGoogle Scholar
  15. Inoue H, Hayashi N, Matsushita A, Xinqiong L, Nakayama A, Sugano S, Jiang CJ, Takatsuji H (2013) Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci U S A 110(23):9577–9582CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T (2014) Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun 5:5430CrossRefPubMedGoogle Scholar
  17. Ji Z, Ji C, Liu B, Zou L, Chen G, Yang B (2016) Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7:13435CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54(1):43–55CrossRefPubMedGoogle Scholar
  19. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72(6):894–907CrossRefPubMedGoogle Scholar
  21. Kawano Y, Akamatsu A, Hayashi K, Housen Y, Okuda J, Yao A, Nakashima A, Takahashi H, Yoshida H, Wong HL, Kawasaki T, Shimamoto K (2010) Activation of a Rac GTPase by the NLR family disease resistance protein pit plays a critical role in rice innate immunity. Cell Host Microbe 7(5):362–375CrossRefPubMedGoogle Scholar
  22. Kawano Y, Fujiwara T, Yao A, Housen Y, Hayashi K, Shimamoto K (2014) Palmitoylation-dependent membrane localization of the rice resistance protein pit is critical for the activation of the small GTPase OsRac1. J Biol Chem 289(27):19079–19088CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A 96(19):10922–10926CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A 103(1):230–235CrossRefPubMedGoogle Scholar
  25. Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K (2012) The bHLH rac immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity. Plant Cell Physiol 53(4):740–754CrossRefPubMedGoogle Scholar
  26. Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63(4):599–612CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kouzai Y, Mochizuki S, Nakajima K, Desaki Y, Hayafune M, Miyazaki H, Yokotani N, Ozawa K, Minami E, Kaku H, Shibuya N, Nishizawa Y (2014) Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice. Mol Plant-Microbe Interact 27(9):975–982CrossRefPubMedGoogle Scholar
  28. Li Z, Ao Y, Feng D, Liu J, Wang J, Wang HB, Liu B (2017) OsRLCK 57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice. Rice 10(1):6.  https://doi.org/10.1186/s12284-017-0145-6 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liebrand TW, van den Burg HA, Joosten MH (2014) Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci 19(2):123–132CrossRefPubMedGoogle Scholar
  30. Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241CrossRefPubMedGoogle Scholar
  31. Liu J, Park CH, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang GL (2015) The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog 11(2):e1004629CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maeda S, Hayashi N, Sasaya T, Mori M (2016) Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice. Breed Sci 66(3):396–406CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mutuku JM, Yoshida S, Shimizu T, Ichihashi Y, Wakatake T, Takahashi A, Seo M, Shirasu K (2015) The WRKY45-dependent signaling pathway is required for resistance against striga hermonthica parasitism. Plant Physiol 168(3):1152–1163CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, Shimamoto K (2016) Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. Plant Cell 28(8):1966–1983CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K (2008) RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell 20(8):2265–2279CrossRefPubMedPubMedCentralGoogle Scholar
  36. Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T (2010) Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem 285(2):1435–1445CrossRefPubMedGoogle Scholar
  37. Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 98(2):759–764CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJ, Luu DD, Chen H, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang W, Zhao X, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a gram-negative bacterium. Sci Adv 1(6):e1500245CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2):204–214CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19(6):2064–2076CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H, Inoue H, Takatsuji H (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13(1):83–94CrossRefPubMedGoogle Scholar
  42. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234CrossRefPubMedPubMedCentralGoogle Scholar
  43. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806CrossRefPubMedGoogle Scholar
  44. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase rac in disease resistance of rice. Proc Natl Acad Sci U S A 99(20):13307–13312CrossRefPubMedPubMedCentralGoogle Scholar
  45. Takahashi A, Kawasaki T, Henmi K, Shi IK, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17(5):535–545CrossRefPubMedGoogle Scholar
  46. Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J 36(2):215–228CrossRefPubMedGoogle Scholar
  47. Urano D, Jones AM (2014) Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol 65:365–384CrossRefPubMedGoogle Scholar
  48. Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1(5):732–750CrossRefPubMedGoogle Scholar
  49. Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E (2017) OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK Cascade in Rice. Mol Plant 10(4):619–633CrossRefPubMedGoogle Scholar
  50. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19(12):4022–4034CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, Fujiwara M, Narusaka M, Narusaka Y, Ichimura K, Kobayashi Y, Matsui H, Nomura Y, Nomoto M, Tada Y, Fukao Y, Fukamizo T, Tsuda K, Shirasu K, Shibuya N, Kawasaki T (2016) The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J 35(22):2468–2483CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yamada K, Yamaguchi K, Yoshimura S, Terauchi A, Kawasaki T (2017) Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant Cell Physiol 58(6):993–1002CrossRefPubMedGoogle Scholar
  53. Yamaguchi K, Imai K, Akamatsu A, Mihashi M, Hayashi N, Shimamoto K, Kawasaki T (2012) SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice. Plant J 70(3):389–397CrossRefPubMedGoogle Scholar
  54. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357CrossRefPubMedGoogle Scholar
  55. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A 95(4):1663–1668CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S (2016) A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 5.  https://doi.org/10.7554/eLife.19605
  57. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16(10):2795–2808CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang H, Wang S (2013) Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr Opin Plant Biol 16(2):188–195CrossRefPubMedGoogle Scholar
  59. Zhang J, Yin Z, White F (2015) TAL effectors and the executor R genes. Front Plant Sci 6:641PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNaraJapan

Personalised recommendations