Cold and Water Deficit Regulatory Mechanisms in Rice: Optimizing Stress Tolerance Potential by Pathway Integration and Network Engineering

  • Benildo G. de los Reyes
  • Yong Sig Kim
  • Bijayalaxmi Mohanty
  • Arvind Kumar
  • Ai Kitazumi
  • Isaiah Catalino M. Pabuayon
  • Nitika Sandhu
  • Dong-Yup Lee
Chapter

Abstract

The responses of rice to cold and water deficit are multidimensional. A holistic approach to maximize tolerance potential requires the optimization of ideal combinations of multiple interacting entities in a genetic network. This chapter presents a modern view for engineering stress-resilient rice cultivars. The first section summarizes the physiological and biochemical aspects of cold and water deficit at the whole-plant and cellular levels. The second part summarizes the major hubs of signaling and transcriptional regulation that lead to biochemical and physiological changes as validated by functional genomics. The rapidly emerging area of investigation on epigenetic regulatory mechanisms as critical layer of control for fine-tuning is presented in brief in the third section. And finally, the last section summarizes the large-effect QTL for cold tolerance and yield stability under drought. By integrating these four layers of information, this chapter should inspire a holistic approach for stress tolerance engineering with strategies illuminated by systems-level biology.

Keywords

Abscisic acid Antagonism Calcium signaling Cellular dehydration Genetic background Genetic networks Molecular synergy QTL Reactive oxygen species Regulatory hubs Transcription factors 

Notes

Acknowledgment

This work was supported by IOS1602494 grant from the National Science Foundation-Integrative Organismal System to BGDR.

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedPubMedCentralCrossRefGoogle Scholar
  2. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470PubMedCrossRefGoogle Scholar
  4. Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42PubMedCrossRefGoogle Scholar
  5. Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amahdi A, Baker DA (2001) The effect of water stress on the sucrose to starch pathway. Plant Growth Regul 35:81091Google Scholar
  7. Andaya VC, Mackill DM (2003a) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from japonica x indica cross. Theor Appl Genet 106:1084–1090PubMedCrossRefGoogle Scholar
  8. Andaya VC, Mackill DM (2003b) Mapping of QTLs associated with cold tolerance during the vegetative stage of rice. J Exp Bot 54:2579–2585PubMedCrossRefGoogle Scholar
  9. Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice. Mol Breed 20:349–358CrossRefGoogle Scholar
  10. Antoine W, Stewart JM, De los Reyes BG (2005) The rice homolog of the sodium/lithium tolerance (SLT1) gene functions as molecular chaperone in vitro. Physiol Plant 125:299–310CrossRefGoogle Scholar
  11. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  12. Asch F, Dingkuhn M, Sow A, Audebert A (2005) Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crop Res 93:223–236CrossRefGoogle Scholar
  13. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240PubMedCrossRefGoogle Scholar
  15. Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510PubMedCrossRefGoogle Scholar
  16. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  17. Bode R, Ivanov AG, Huner NP (2016) Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Photosynth Res 128:287–312PubMedCrossRefGoogle Scholar
  18. Bray EA (2002) Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161PubMedCrossRefGoogle Scholar
  19. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280PubMedCrossRefGoogle Scholar
  20. Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen TH, Thomashow MF (2011) A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807–3819PubMedPubMedCentralCrossRefGoogle Scholar
  21. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS (2007) A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol 63:151–169PubMedCrossRefGoogle Scholar
  23. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  24. Cheah BH, Nadarajah K, DIvate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profiles between drought tolerant and susceptible rice leaf at vegetative stage. BMC Genomics 16:e692CrossRefGoogle Scholar
  25. Chen X (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677PubMedCrossRefGoogle Scholar
  27. Chen H, Chen W, Zhou J, He H, Chen L, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193(194):8–17PubMedCrossRefGoogle Scholar
  28. Cheng C, Yun KY, Ressom H, Mohanty B, Bajic VB, Jia Y, Yun SJ, De los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:e175CrossRefGoogle Scholar
  29. Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  31. Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730PubMedCrossRefGoogle Scholar
  32. Chu SH, Noh HN, Kim S, Kim KH, Hong SW, Lee H (2010) Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Mol Biol 74:493–502PubMedCrossRefGoogle Scholar
  33. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, DordrechtGoogle Scholar
  35. Courtois B, Shen L, Petalcorin W, Carandang S, Mauleon R, Li Z (2003) Locating QTLs controlling constitutive root traits in the rice population IAC165× Co39. Euphytica 134:335–345CrossRefGoogle Scholar
  36. Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49:1384–1391PubMedCrossRefGoogle Scholar
  37. Cui N, Sun X, Sun M, Jia B, Duanmu H, Lv DK, Duan X, Zhu Y (2015) Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza sativa). Mol Breed 35:e214CrossRefGoogle Scholar
  38. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  39. Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586PubMedCrossRefGoogle Scholar
  40. De los Reyes BG, Mohanty B, Yun JS, Park MR, Lee DY (2015) Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. Rice 8:e1410Google Scholar
  41. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Biol 64:3077–3086Google Scholar
  43. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289PubMedCrossRefGoogle Scholar
  44. Dipiero S, Leonardis SD (1997) The ascorbate system and lipid peroxidation in stored potato (Solanum tuberosum L.) tubers. J Exp Bot 48:779–783CrossRefGoogle Scholar
  45. Distelbarth H, Nagele T, Heyer AG (2013) Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Plant Biol (Stuttg) 15:982–990CrossRefGoogle Scholar
  46. Dixit S, Swamy BM, Vikram P, Bernier J, Cruz MS, Amante M, Atri D, Kumar A (2012) Increased drought tolerance and wider adaptability of qDTY 12.1 conferred by its interaction with qDTY 2.3 and qDTY 3.2. Mol Breed 30:1767–1779CrossRefGoogle Scholar
  47. Dixit S, Biswal AK, Min A, Henry A, Oane RH, Raorane ML, Longkumer T, Pabuayon IM, Mutte SK, Vardarajan AR, Miro B (2015) Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci Rep 5:e15183CrossRefGoogle Scholar
  48. Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AA (2006) Time of day modulates low-temperature Ca signals in Arabidopsis. Plant J 48:962–973PubMedCrossRefGoogle Scholar
  49. Doherty CJ, van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  51. Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Biol 65:2119–2135Google Scholar
  52. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  53. Farrell TC, Fox KM, Williams RL, Fukai S, Lewin LG (2006) Minimizing cold damage during reproductive development among temperate rice genotypes. II genotypic variation and flowering traits related to cold tolerance screening. Aust J Agric Res 57:89–100CrossRefGoogle Scholar
  54. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  55. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071CrossRefGoogle Scholar
  56. De Freitas GPM, Basu S, Ramegowda V, Braga EB, Pereira A (2016) Comparative analysis of gene expression in response to cold stress in diverse rice genotypes. Biochem Biophys Res Commun 471:253259Google Scholar
  57. Fujino K, Sekigucji H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3, controlling low temperature germinability in rice. Proc Natl Acad Sci U S A 105:12623–12628PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27PubMedCrossRefGoogle Scholar
  59. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) Osa-MiR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242PubMedCrossRefGoogle Scholar
  61. Garg R, Narayana Chevala V, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:e14922CrossRefGoogle Scholar
  62. Ghimire KH, Quiatchon LA, Vikram P, Swamy BM, Dixit S, Ahmed H, Hernandez JE, Borromeo TH, Kumar A (2012) Identification and mapping of a QTL (qDTY 1.1) with a consistent effect on grain yield under drought. Field Crop Res 131:88–96CrossRefGoogle Scholar
  63. Gigon A, Matos A, Laffaray D, Zuili-fodil Y, Pham-Thi A (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94:345–351PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 99:11507–11512PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gu J, Yin X, Stomph TJ, Wang H, Struik PC (2012) Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot 63:5137–5153PubMedPubMedCentralCrossRefGoogle Scholar
  67. Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant Leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271PubMedCrossRefGoogle Scholar
  68. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  69. He Y, Amasino RM (2005) Role of chromatin modification in flowering time control. Trends Plant Sci 10:30–35PubMedCrossRefGoogle Scholar
  70. Henry A, Swamy BPM, Dixit S, Torres RD, Batoto TC, Manalili M, Anantha MS, Mandal NP, Kumar A (2015) Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. J Exp Bot 66:1787–1799PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hepworth J, Dean C (2015) Flowering locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol 168:1237–1245PubMedPubMedCentralCrossRefGoogle Scholar
  72. Herath VG (2011) Transcriptional regulatory networks involved in plant responses to low temperature. PhD Dissertation, University of Maine, Orono, Publication 3484686Google Scholar
  73. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci U S A 96:15348–15353PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hossain M, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566CrossRefGoogle Scholar
  76. Huang C, Ding S, Zhang H, Du H, An L (2011) CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci 181:57–64PubMedCrossRefGoogle Scholar
  77. Huner NPA, Oquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39PubMedCrossRefGoogle Scholar
  78. Jagadish SVK, Muthirajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (O. sativa L.) J Exp Bot 61:143–156PubMedCrossRefGoogle Scholar
  79. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefGoogle Scholar
  80. Jaradat MR, Feurtado JA, Huang D, Lu Y, Cutler AJ (2013) Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol 13:e1CrossRefGoogle Scholar
  81. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  82. Jiang W, Jin YM, Lee J, Lee K, Piao R, Han L, Shin JC, Jin RD, Cao T, Pan HY, Du X, Koh HJ (2011) Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Mol Cells 32:579–587PubMedPubMedCentralCrossRefGoogle Scholar
  83. Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M (2016) Natural variation of cold deacclimation correlates with variation of cold-acclimation of the plastid antioxidant system in Arabidopsis thaliana accessions. Front Plant Sci 7:e305CrossRefGoogle Scholar
  84. Kagaya Y, Hobo T, Murata M, Ban A, Hattori T (2002) Abscisic acid induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14:3177–3189PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedCrossRefGoogle Scholar
  86. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  87. Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kim BH, Kim SY, Nam KH (2012) Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mole Cells 34:539–548CrossRefGoogle Scholar
  89. Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376PubMedCrossRefGoogle Scholar
  90. Kitazumi A, Kawahara Y, Onda TS, De Koeyer D, de los Reyes BD (2015) Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome 58:13–24PubMedCrossRefGoogle Scholar
  91. Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686PubMedCrossRefGoogle Scholar
  92. Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949PubMedCrossRefGoogle Scholar
  94. Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kumar A, Verulkar S, Dixit S, Chauhan B, Bernier J, Venuprasad R, Zhao D, Shrivastava MN (2009) Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crop Res 114:99–107CrossRefGoogle Scholar
  96. Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278PubMedPubMedCentralCrossRefGoogle Scholar
  97. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lawlor DW (2002) Limitation to photosynthesis in water stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:1–9CrossRefGoogle Scholar
  99. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lee SC, Kwon SY, Kim SR (2009) Ectopic expression of a cold-responsive CuZn superoxide dismutase gene SodCc1, in transgenic rice (Oryza sativa L.) J Plant Biol 52:154–160CrossRefGoogle Scholar
  101. Lenka SK, Lohia B, Kumar A, Chinnusamy V, Bansal KC (2009) Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes. Plant Mol Biol 69:261–271PubMedCrossRefGoogle Scholar
  102. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar C, Liu GF, Wang GC, Shashidhar HE, Zhuang JY (2003) QTL× environment interactions in rice heading date and plant height. Theor Appl Genet 108:141–153PubMedCrossRefGoogle Scholar
  103. Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13:e300CrossRefGoogle Scholar
  104. Li XY, Liu X, Yao Y, Li YH, Liu S, He CY, Li JM, Lin YY, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827–12842PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol 196:427–440PubMedCrossRefGoogle Scholar
  106. Liu HS, Li FM (2005) Root respiration, photosynthesis and grain yield of two spring heat in response to soil drying. Plant Growth Regul 46:233–240CrossRefGoogle Scholar
  107. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  108. Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236PubMedCrossRefGoogle Scholar
  109. Liu C, Mao B, Ou S, Wang W, Liu L, Wu W, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36PubMedCrossRefGoogle Scholar
  110. Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787PubMedPubMedCentralCrossRefGoogle Scholar
  111. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta (BBA) Biomembr 1666:142–157CrossRefGoogle Scholar
  112. Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Xia H, Li T, Luo L (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lu Y, Feng Z, Bian L, Xie H, Liang J (2010) miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CDS1 and CDS2 expression. Funct Plant Biol 38:44–53CrossRefGoogle Scholar
  114. Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in oryza sativa. Mol Biol Evol 29:1005–1017PubMedCrossRefGoogle Scholar
  115. Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs by microarrays. Gene 459:39–47PubMedCrossRefGoogle Scholar
  116. Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24:445–466CrossRefGoogle Scholar
  117. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  118. Mackill DJ, Lei X (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346CrossRefGoogle Scholar
  119. Manikavelu A, Nadarajan N, Ganesh SJ, Gnanamalar RP, Babu RC (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138CrossRefGoogle Scholar
  120. Marti MC, Stancombe MA, Webb AA (2013) Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol 163:625–634PubMedPubMedCentralCrossRefGoogle Scholar
  121. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980PubMedPubMedCentralCrossRefGoogle Scholar
  122. Matsui T, Kagata H (2003) Characteristics of floral organs related to reliable self-pollination in rice. Ann Bot 91:473–477PubMedPubMedCentralCrossRefGoogle Scholar
  123. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  124. Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low temperature survival. Proc Natl Acad Sci U S A 90:6208–6212PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mishra KK, Vikram P, Yadaw RB, Swamy BM, Dixit S, Cruz MT, Maturan P, Marker S, Kumar A (2013) qDTY 12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet 14:e12CrossRefGoogle Scholar
  126. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mohanty B, Lakshmanan M, Kitazumi A, Cheung CYM, De los Reyes BG, Jang IC, Lee DY (2016) Validation of critical network hubs involved in drought stress response mechanisms by integrating transcriptome data and genome-scale metabolic model: potential applications for drought tolerance breeding in rice. Plant Sci 242:224–239PubMedCrossRefGoogle Scholar
  128. Morsy MR, Almutairi AM, Gibbons J, Yun SJ, De los Reyes BG (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171–180PubMedCrossRefGoogle Scholar
  129. Munne-Bosche S, Shikani T, Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and α-tocopherol quinone accumulation in water-stressed ndhB-inactivated tobacco mutants. Planta 222:502–511CrossRefGoogle Scholar
  130. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713CrossRefGoogle Scholar
  131. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134PubMedCrossRefGoogle Scholar
  132. Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress response and seed development. Plant Cell Rep 32:959–970PubMedCrossRefGoogle Scholar
  133. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148PubMedCrossRefGoogle Scholar
  134. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  135. Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129PubMedCrossRefGoogle Scholar
  136. Nishida I, Murata N (1996) Chilling sensitivity in plants and Cyanobacteria: the crucial contribution of membrane lipids. Ann Rev Plant Physiol Plant Mol Biol 47:541–568CrossRefGoogle Scholar
  137. Oakley CG, Agren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315PubMedCrossRefGoogle Scholar
  138. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  139. Park MR, Yun KY, Herath V, Mohanty B, Xu F, Bajic VB, Yun SJ, De los Reyes BG (2010) Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ 33:2209–2230PubMedCrossRefGoogle Scholar
  140. Park MR, Baek SH, de los Reyes BG, Yun SJ, Hasenstein KH (2012) Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. J Plant Physiol 169:193–205PubMedCrossRefGoogle Scholar
  141. Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207PubMedCrossRefGoogle Scholar
  142. Parry MJ, Andraloji PJ, Khan S, Lea PJ, Keys AJ (2002) RUBISCO activity: effect of drought stress. Ann Bot 89:833–839PubMedPubMedCentralCrossRefGoogle Scholar
  143. Paupiere MJ, van Heusden AW, Bovy AG (2014) The metabolic basis of pollen thermos-tolerance: perspectives for breeding. Metabolites 4:889–920PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pélissier T, Thalmeir S, Kempe D, Sänger HL, Wassenegger M (1999) Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res 27:1625–1634PubMedPubMedCentralCrossRefGoogle Scholar
  145. Perreira da Cruz R, Kothe Milach SC, Federizzi LC (2006) Rice cold tolerance at the reproductive stage in a controlled environment. Sci Agric 63:255–261CrossRefGoogle Scholar
  146. Pieters AJ, El Souki S (2005) Effects of drought during grain filling on PSII activity in rice. J Plant Physiol 162:903–911PubMedCrossRefGoogle Scholar
  147. Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600PubMedCrossRefGoogle Scholar
  149. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rapacz MM, Gasior D, Zwierzykowski Z, Lesnniewska-Bocianowkska A, Humpreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis x Lolium multiflorum cultivars. New Phytol 161:105–114CrossRefGoogle Scholar
  151. Reddy AR, Chaitanya KV, Vivekanandah M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202CrossRefGoogle Scholar
  152. Redona ED, MacKill DJ (1996) Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor Appl Genet 92:395–402PubMedCrossRefGoogle Scholar
  153. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–596PubMedCrossRefGoogle Scholar
  154. Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctd1. Plant Sci 179:97–102CrossRefGoogle Scholar
  155. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sandhu N, Singh A, Dixit S, Cruz MT, Maturan PC, Jain RK, Kumar A (2014) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet 15:63PubMedPubMedCentralCrossRefGoogle Scholar
  157. Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668PubMedCrossRefGoogle Scholar
  158. Satake T (1991) Male sterility caused by cooling treatment at the young microspore stage in rice plants. Jpn J Crop Sci 60:523–528CrossRefGoogle Scholar
  159. Sato Y, Masuta Y, Saito K, Maruyama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene OsAPXa. Plant Cell Rep 30:399–406PubMedCrossRefGoogle Scholar
  160. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341PubMedCrossRefGoogle Scholar
  161. Shamsudin A, Swamy M, Ratnam W, Cruz MT, Sandhu N, Raman AK, Kumar A (2016) Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9:e1CrossRefGoogle Scholar
  162. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  163. Sharma R, Mohan Singh RK, Malik G, Deveshwar P, Tyagi AK, Kapoor S, Kapoor M (2009) Rice cytosine DNA methyltransferases – gene expression profiling during reproductive development and abiotic stress. FEBS J 276:6301–6311PubMedCrossRefGoogle Scholar
  164. Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307PubMedPubMedCentralCrossRefGoogle Scholar
  165. Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient or ABA induction of gene expression in barley. Plant Cell 8:1107–1119PubMedPubMedCentralCrossRefGoogle Scholar
  166. Shinada H, Iwata N, Sato T, Fujino K (2013) Genetical and morphological characterization of cold tolerance at fertilization stage in rice. Breed Sci 63:483–488CrossRefGoogle Scholar
  167. Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170PubMedCrossRefGoogle Scholar
  168. Shivaprasad PV, Dunn RM, Santos BACM, Bassett A, Baulcombe DC (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266PubMedCrossRefGoogle Scholar
  169. Song X, Cao X (2017) Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol 36:111–118PubMedCrossRefGoogle Scholar
  170. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575PubMedPubMedCentralCrossRefGoogle Scholar
  171. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746PubMedCrossRefGoogle Scholar
  172. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  173. Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  174. Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807PubMedPubMedCentralCrossRefGoogle Scholar
  175. Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442PubMedCrossRefGoogle Scholar
  176. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426PubMedCrossRefGoogle Scholar
  177. Tian X, Wang Z, Li X, Lv T, Liu H, Wang L, Niu H, Bu Q (2015) Characterization and functional analysis of pyrobactin resistance-like abscisic acid receptor family in rice. Rice 8:e28CrossRefGoogle Scholar
  178. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102PubMedCrossRefGoogle Scholar
  179. Van Buer J, Cvetkovic J, Baier M (2016) Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16:163PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MT, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89PubMedPubMedCentralCrossRefGoogle Scholar
  181. Vikram P, Swamy BM, Dixit S, Singh R, Singh BP, Miro B, Kohli A, Henry A, Singh NK, Kumar A (2015) Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Sci Rep 5:14799PubMedPubMedCentralCrossRefGoogle Scholar
  182. Vikram P, Swamy BM, Dixit S, Trinidad J, Cruz MT, Maturan PC, Amante M, Kumar A (2016) Linkages and interactions analysis of major effect drought grain yield QTLs in rice. PLoS ONE 11:e0151532PubMedPubMedCentralCrossRefGoogle Scholar
  183. Vu JCV, Gesch RW, Allen RH, Boote KJ, Bowes G (1999) CO2 enrichment delays a rapid, drought induced decrease in Rubisco small subunit transcript abundance. J Plant Physiol 155:139CrossRefGoogle Scholar
  184. Wang D, Liu J, Li C, Kang H, Wang Y, Tan X, Liu M, Deng Y, Wang Z, Liu Y, Zhang D, Xiao D, Xiao Y, Wang GL (2016) Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice 9:e61CrossRefGoogle Scholar
  185. Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576PubMedCrossRefGoogle Scholar
  186. Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, Wang L, Hu F, Zhai J, Meyers BC et al (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci U S A 111:3877–3882PubMedPubMedCentralCrossRefGoogle Scholar
  187. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475PubMedCrossRefGoogle Scholar
  188. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7:e30039PubMedPubMedCentralCrossRefGoogle Scholar
  189. Xia H, Huang W, Xiong J, Tao T, Zheng X, Wei H, Yue Y, Chen L, Luo L (2016) Adaptive epigenetic differentiation between upland and lowland rice ecotypes revealed by methylation-sensitive amplified polymorphism. PLoS ONE 11:1–15Google Scholar
  190. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952PubMedPubMedCentralCrossRefGoogle Scholar
  191. Xiaochuang C, Chu Z, Lianfeng Z, Junhua Z, Hussain S, Lianghuan W, Qianyu J (2017) Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis. Plant Physiol Biochem 112:251–260PubMedCrossRefGoogle Scholar
  192. Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9:e92913PubMedPubMedCentralCrossRefGoogle Scholar
  193. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339PubMedCrossRefGoogle Scholar
  194. Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X, Fang R (2011) Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J 65:820–828PubMedCrossRefGoogle Scholar
  195. Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crop Res 71:47–55CrossRefGoogle Scholar
  196. Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of miRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) Plant Cell Environ 36:2207–2218PubMedCrossRefGoogle Scholar
  197. Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100PubMedCrossRefGoogle Scholar
  198. Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim SK, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3677–3706Google Scholar
  199. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685PubMedCrossRefGoogle Scholar
  200. Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38:35–49PubMedCrossRefGoogle Scholar
  201. Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608PubMedCrossRefGoogle Scholar
  202. Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, De los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:e16CrossRefGoogle Scholar
  203. Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918PubMedPubMedCentralCrossRefGoogle Scholar
  204. ZG E, Zhang YP, Zhou JH, Wang L (2014) Roles of the bZIP gene family in rice. Genet Mol Res 13:3025–3036CrossRefGoogle Scholar
  205. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  206. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of miR169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409PubMedCrossRefGoogle Scholar
  207. Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7:e24CrossRefGoogle Scholar
  208. Zhang X, Sun J, Cao X, Song X (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128PubMedPubMedCentralGoogle Scholar
  209. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590PubMedCrossRefGoogle Scholar
  210. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of the miR169 family are induced by high salinity and transiently inhibit the NF-Yα transcription factor. BMC Mole Biol 10:29CrossRefGoogle Scholar
  211. Zheng X, Chen L, Li M, Lou Q, Xia H, Wang P, Li T, Liu H, Luo L (2013) Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE 8:1–13Google Scholar
  212. Zhou Y, Lam HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217PubMedCrossRefGoogle Scholar
  213. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Biol 61:4157–4168Google Scholar
  214. Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mole Biol 66:675–683CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Benildo G. de los Reyes
    • 1
  • Yong Sig Kim
    • 1
  • Bijayalaxmi Mohanty
    • 2
  • Arvind Kumar
    • 3
  • Ai Kitazumi
    • 1
  • Isaiah Catalino M. Pabuayon
    • 1
  • Nitika Sandhu
    • 3
  • Dong-Yup Lee
    • 2
  1. 1.Plant Molecular Genetics Laboratory, Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Plant Breeding DivisionInternational Rice Research InstituteLos BañosPhilippines

Personalised recommendations