Genetic Mechanisms Involved in the Formation of Root System Architecture

Chapter

Abstract

Root system is essential for absorbing water and nutrients as well as anchoring shoots to the ground. Understanding the genetic mechanisms related to the formation of root system architecture is necessary for improving rice productivity. Here, we first describe the potential of genetic improvement using quantitative trait locus (QTL) for root system architecture based on our field experiments using a genetic material of DEEPER ROOTING 1, which is a rice QTL controlling root growth angle. Next, we summarize the accumulated knowledge on the genetic mechanisms of root formation in rice including the development of the radicle, crown roots, lateral roots, and root hairs. We also overview the current status of the genetic dissection of root system architecture in rice, namely, the identification and characterization of natural and artificial alleles. Root traits are rarely chosen as breeding targets because their evaluation in a large number of plants under field conditions is more laborious and time-consuming than evaluation of aboveground traits. The genetic dissection of root system architecture would facilitate the breeding of root traits, eventually improving rice yield irrespective of soil and other environmental conditions.

Keywords

Fibrous root system Ideotype Mutant Phytohormone QTL Root formation Root morphology 

References

  1. Abe J, Morita S (1994) Growth direction of nodal roots in rice: its variation and contribution to root system formation. Plant Soil 165:333–337CrossRefGoogle Scholar
  2. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178PubMedCrossRefGoogle Scholar
  3. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120PubMedCrossRefGoogle Scholar
  4. Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 4:5563PubMedPubMedCentralCrossRefGoogle Scholar
  5. Araki H, Morita S, Tatsumi J, Iijima M (2002) Physio-morphological analysis on axile root growth in upland rice. Plant Prod Sci 5:286–293CrossRefGoogle Scholar
  6. Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100:126–142PubMedCrossRefGoogle Scholar
  7. Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196:149–161PubMedCrossRefGoogle Scholar
  8. Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595PubMedCrossRefGoogle Scholar
  9. Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981PubMedCrossRefGoogle Scholar
  10. Chen YH, Chao YY, Hsu YY, Hong CY, Kao CH (2012a) Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. Plant Cell Rep 31:1085–1091PubMedCrossRefGoogle Scholar
  11. Chen Y, Fan X, Song W, Zhang Y, Xu G (2012b) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10:139–149PubMedCrossRefGoogle Scholar
  12. Chen X, Shi J, Hao X, Liu H, Shi J, Wu Y, Wu Z, Chen M, Wu P, Mao C (2013) OsORC3 is required for lateral root development in rice. Plant J 74:339–350PubMedCrossRefGoogle Scholar
  13. Chhun T, Takeda S, Tsurumi S, Ichii M (2003) Interaction between two auxin-resistant mutants and their effects on lateral root formation in rice (Oryza sativa L.) J Exp Bot 54:2701–2708PubMedCrossRefGoogle Scholar
  14. Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT, Paek NC (2013) The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198:1071–1084PubMedCrossRefGoogle Scholar
  15. Chuang HW, Zhang W, Gray WM (2004) Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCFTIR1 ubiquitin ligase. Plant Cell 16:1883–1897PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326PubMedCrossRefGoogle Scholar
  17. Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226PubMedCrossRefGoogle Scholar
  18. Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128CrossRefGoogle Scholar
  19. Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425PubMedCrossRefGoogle Scholar
  20. de Dorlodot S, Forster B, Pagé L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481PubMedCrossRefGoogle Scholar
  21. Deeks MJ, Cvrcková F, Machesky LM, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540PubMedCrossRefGoogle Scholar
  22. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682CrossRefGoogle Scholar
  23. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384CrossRefGoogle Scholar
  24. Di Laurenzio L, Wysockadiller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433PubMedCrossRefGoogle Scholar
  25. Ding W, Yu Z, Tong Y, Huang W, Chen H, Wu P (2009) A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res 19:1309–1311PubMedCrossRefGoogle Scholar
  26. Ding X, Li X, Xiong L (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826PubMedCrossRefGoogle Scholar
  27. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis root. Development 119:71–84PubMedGoogle Scholar
  28. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096PubMedCrossRefGoogle Scholar
  29. Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ (2010) Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.) Plant Cell Environ 33:687–701PubMedGoogle Scholar
  30. Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP, Deng XW (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16:1870–1882PubMedPubMedCentralCrossRefGoogle Scholar
  31. Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673PubMedCrossRefGoogle Scholar
  32. Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Gen Genomics 279:499–507CrossRefGoogle Scholar
  33. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057PubMedCrossRefGoogle Scholar
  34. Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165:1035–1046PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ge L, Chen R (2016) Negative gravitropism in plant roots. Nat Plants 2:16155PubMedCrossRefGoogle Scholar
  36. Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  38. Gewin V (2010) An underground revolution. Nature 466:552–553PubMedCrossRefGoogle Scholar
  39. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13CrossRefGoogle Scholar
  40. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates the SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276PubMedCrossRefGoogle Scholar
  41. Guseman JM, Webb K, Srinivasan C, Dardick C (2017) DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–1105PubMedCrossRefGoogle Scholar
  42. Han Y, Cao H, Jiang J, Xu Y, Du J, Wang X, Yuan M, Wang Z, Xu Z, Chong K (2008) Rice ROOT ARCHITECTURE ASSOCIATED1 binds the proteasome subunit RPT4 and is degraded in a D-box and proteasome-dependent manner. Plant Physiol 148:843–855PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hao Z, Ichii M (1999) A mutant RM109 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn J Crop Sci 68:245–252CrossRefGoogle Scholar
  44. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  45. Hong SK, Aoki T, Kitano H, Satoh H, Nagato Y (1995) Phenotypic diversity of 188 rice embryo mutants. Dev Genet 16:298–310CrossRefGoogle Scholar
  46. Huang CF, Yamaji N, Nishimura M, Tajima S, Ma JF (2009) A rice mutant sensitive to Al toxicity is defective in the specification of root outer cell layers. Plant Cell Physiol 50:976–985PubMedCrossRefGoogle Scholar
  47. Huang CF, Yamaji N, Ono K, Ma JF (2012) A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots. Plant J 69:565–576PubMedCrossRefGoogle Scholar
  48. Huang J, Kim CM, Xuan YH, Liu J, Kim TH, Kim BK, Han CD (2013a) Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237:1227–1239PubMedCrossRefGoogle Scholar
  49. Huang J, Kim CM, Xuan YH, Park SJ, Piao HL, Je BI, Liu J, Kim TH, Kim BK, Han CD (2013b) OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice. Plant Mol Biol 82:39–50PubMedCrossRefGoogle Scholar
  50. Inukai Y, Miwa M, Nagato Y, Kitano H, Yamauchi A (2001) Characterization of rice mutants deficient in formation of crown roots. Breed Sci 51:123–129CrossRefGoogle Scholar
  51. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown Rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396PubMedPubMedCentralCrossRefGoogle Scholar
  52. Inukai Y, Sakamoto T, Morinaka Y, Miwa M, Kojima M, Tanimoto E, Yamamoto H, Sato K, Katayama Y, Matsuoka M, Kitano H (2012) ROOT GROWTH INHIBITING, a rice endo-1,4-β-D-glucanase regulates cell wall loosening and is essential for root elongation. J Plant Growth Regul 31:373–381CrossRefGoogle Scholar
  53. Itoh J-I, Nonomura K-I, Ikeda K, Yamaki S, Inukai Y, Yamaguchi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47PubMedCrossRefGoogle Scholar
  54. Itoh J-I, Sato Y, Sato Y, Hibara K-I, Shimizu-Sato S, Kobayashi H, Takehisa H, Sanguinet KA, Namiki N, Nagamura Y (2016) Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice. Development 143:1217–1227PubMedCrossRefGoogle Scholar
  55. Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59PubMedCrossRefGoogle Scholar
  56. Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634PubMedCrossRefGoogle Scholar
  57. Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P, Wu Z (2008) OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.) Planta 228:51–59PubMedCrossRefGoogle Scholar
  58. Jia L, Wu Z, Hao X, Carrie C, Zheng L, Whelan J, Wu Y, Wang S, Wu P, Mao C (2011) Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytol 189:843–855PubMedCrossRefGoogle Scholar
  59. Jiang H, Wang S, Dang L, Wang S, Chen H, Wu Y, Jiang X, Wu P (2005) A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol 138:232–242PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kamiya N, Itoh J-I, Morikami A, Nagato Y, Matsuoka M (2003a) The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J 36:45–54PubMedCrossRefGoogle Scholar
  61. Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003b) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441PubMedCrossRefGoogle Scholar
  62. Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74:86–97PubMedCrossRefGoogle Scholar
  63. Kawata S, Ishihara K (1959) Studies on the root hair in rice plant (in Japanese). Jpn J Crop Sci 27:341–348CrossRefGoogle Scholar
  64. Kawata S, Shibayama H (1965) On the lateral root primordia formation in the crown roots of rice plants (in Japanese). Proc Crop Sci Soc Jpn 33:423–431CrossRefGoogle Scholar
  65. Kawata S, Soejima M, Yamazaki K (1978) The superficial root function and yield of hulled rice (in Japanese). Jpn J Crop Sci 47:617–628CrossRefGoogle Scholar
  66. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822PubMedCrossRefGoogle Scholar
  67. Kim CM, Dolan L (2011) Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa. New Phytol 192:601–610PubMedCrossRefGoogle Scholar
  68. Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2970PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kinae T, Hong SK, Nagato Y (2005) Apical displacement1 gene regulates apical-basal pattern formation in rice embryo. Plant Sci 168:1345–1351CrossRefGoogle Scholar
  71. Kitomi Y, Kitano H, Inukai Y (2008a) Mapping of the CROWN ROOTLESS3 gene, CRL3, in rice. Rice Gen Newslett 24:31–33Google Scholar
  72. Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008b) CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2:19–28CrossRefGoogle Scholar
  73. Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484PubMedCrossRefGoogle Scholar
  74. Kitomi Y, Inahashi H, Inukai Y (2012) OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Plant Sci 190:116–122PubMedCrossRefGoogle Scholar
  75. Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y (2015) QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kitomi Y, Nakao E, Kawai S, Kanno N, Ando T, Fukuoka S, Irie K, Uga Y (in press) Fine mapping of QUICK ROOTING 1 and 2, quantitative trait loci increasing root length in rice. G3Google Scholar
  77. Klepper B (1992) Development and growth of crop root systems. In: Hatfield JL, Stewart BA (eds) Limitations to plant root growth. Springer, New York, pp 1–25Google Scholar
  78. Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lafitte HR, Champoux MC, McLaren G, O’Toole JC (2001) Rice root morphological traits are related to isozyme group and adaptation. Field Crops Res 71:57–70CrossRefGoogle Scholar
  80. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:1–48CrossRefGoogle Scholar
  81. Li J, Han Y, Liu L, Chen Y, Du Y, Zhang J, Sun H, Zhao Q (2015) qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. J Exp Bot 66:2723–2732PubMedCrossRefGoogle Scholar
  82. Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G (2010) Root hair systems biology. Trends Plant Sci 15:641–650PubMedCrossRefGoogle Scholar
  83. Liscum E, Reed JW (2002) Genetics of AUX/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400PubMedCrossRefGoogle Scholar
  84. Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202PubMedCrossRefGoogle Scholar
  85. Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB domain protein required for adventitious root formation in rice. Plant J 43:47–56PubMedCrossRefGoogle Scholar
  86. Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119PubMedCrossRefGoogle Scholar
  87. Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Xia H, Li T, Luo L (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR (2001) Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci U S A 98:2262–2267PubMedPubMedCentralCrossRefGoogle Scholar
  89. Luquet D, Zhang BG, Dingkuhn M, Dexet A, Clément-Vidal A (2005) Phenotypic plasticity of rice seedlings: case of phosphorus deficiency. Plant Prod Sci 8:145–151CrossRefGoogle Scholar
  90. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lynch J (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ma N, Wang Y, Qiu S, Kang Z, Che S, Wang G, Huang J (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One 8:e75997PubMedPubMedCentralCrossRefGoogle Scholar
  93. Miyashita Y, Takasugi T, Ito Y (2010) Identification and expression analysis of PIN genes in rice. Plant Sci 178:424–428CrossRefGoogle Scholar
  94. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720PubMedCrossRefGoogle Scholar
  95. Morita Y, Kyozuka J (2007) Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Plant Cell Physiol 48:540–549PubMedCrossRefGoogle Scholar
  96. Morita S, Suga T, Yamazaki K (1988) The relationship between root length density and yield in rice plants (in Japanese). Jpn J Crop Sci 57:438–443CrossRefGoogle Scholar
  97. Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M (2006) Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J 46:297–306PubMedCrossRefGoogle Scholar
  98. Ni J, Wang GH, Zhu ZX, Zhang HH, Wu YR, Wu P (2011) OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J 68:433–442CrossRefGoogle Scholar
  99. Norton GJ, Price AH (2009) Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica 166:229–237CrossRefGoogle Scholar
  100. O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agric 41:91–143CrossRefGoogle Scholar
  101. Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theor Appl Genet 121:535–547PubMedPubMedCentralCrossRefGoogle Scholar
  102. Oyanagi A, Nakamoto T, Morita S (1993) The gravitropic response of roots and the shaping of the root system in cereal plants. Environ Exp Bot 33:141–158CrossRefGoogle Scholar
  103. Paul AS, Pollard TD (2009) Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskel 66:606–617CrossRefGoogle Scholar
  104. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959PubMedPubMedCentralCrossRefGoogle Scholar
  105. Qi Y, Wang S, Shen C, Zhang S, Chen Y, Xu Y, Liu Y, Wu Y, Jiang D (2012) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol 193:109–120PubMedCrossRefGoogle Scholar
  106. Qin C, Li Y, Gan J, Wang W, Zhang H, Liu Y, Wu P (2013) OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. Plant Cell Physiol 54:129–137PubMedCrossRefGoogle Scholar
  107. Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, Espeout S, Guiderdoni E, Périn C (2009) Molecular genetics of rice root development. Rice 2:15–34CrossRefGoogle Scholar
  108. Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527PubMedCrossRefGoogle Scholar
  109. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472PubMedCrossRefGoogle Scholar
  110. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sakata I, Kagiya T, Kawai Y, Oyanagi A (2004) Effects of pruning of roots growing at various angles on pushing resistance of rice cultivars (in Japanese). Jpn J Crop Sci 73:1–5CrossRefGoogle Scholar
  112. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signaling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814PubMedCrossRefGoogle Scholar
  113. Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2011) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 39:D1141–D1148PubMedCrossRefGoogle Scholar
  114. Scarpella E, Rueb S, Meijer AH (2003) The RADICLELESS1 gene is required for vascular pattern formation in rice. Development 130:645–658PubMedCrossRefGoogle Scholar
  115. Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142PubMedCrossRefGoogle Scholar
  116. Scheffran J, Battaglini A (2011) Climate and conflicts: the security risks of global warming. Reg Environ Chang 11(Suppl 1):27–39CrossRefGoogle Scholar
  117. Shin JH, Jeong DH, Park MC, An G (2005) Characterization and transcriptional expression of the α-expansin gene family in rice. Mol Cells 20:210–218PubMedGoogle Scholar
  118. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  119. Suralta RR, Inukai Y, Yamauchi A (2008) Utilizing chromosome segment substation lines (CSSLs) for evaluation of root responses to transient moisture stresses in rice. Plant Prod Sci 11:457–465CrossRefGoogle Scholar
  120. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Gen Genomics 279:213–223CrossRefGoogle Scholar
  121. Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol 33:445–449PubMedCrossRefGoogle Scholar
  122. Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754PubMedCrossRefGoogle Scholar
  123. Terashima K (1997) Eco-physiological study of root lodging tolerance in direct-seeded rice cultivars. JARQ 31:155–162Google Scholar
  124. Terashima K, Ogata T, Akita S (1994) Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation II. Root growth characteristics of tolerant cultivars to root lodging (in Japanese). Jpn J Crop Sci 63:34–41CrossRefGoogle Scholar
  125. Terashima K, Akita S, Sakai N (1995) Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation III. Relationship between the characteristics of root distribution in the soil and lodging tolerance (in Japanese). Jpn J Crop Sci 64:243–250CrossRefGoogle Scholar
  126. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  127. Uga Y, Okuno K, Yano M (2008) QTL underlying natural variation in stele and xylem structures of rice root. Breed Sci 58:7–14CrossRefGoogle Scholar
  128. Uga Y, Ebana K, Abe J, Morita S, Okuno K, Yano M (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93CrossRefGoogle Scholar
  129. Uga Y, Okuno K, Yano M (2010) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538CrossRefGoogle Scholar
  130. Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494PubMedCrossRefGoogle Scholar
  131. Uga Y, Hanzawa E, Nagai S, Sasaki K, Yano M, Sato T (2012) Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields. Theor Appl Genet 124:75–86PubMedCrossRefGoogle Scholar
  132. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013a) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102PubMedCrossRefGoogle Scholar
  133. Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S (2013b) A major QTL controlling deep rooting on rice chromosome 4. Sci Rep 3:3040PubMedPubMedCentralCrossRefGoogle Scholar
  134. Uga Y, Kitomi Y, Ishikawa S, Yano M (2015a) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119PubMedPubMedCentralCrossRefGoogle Scholar
  135. Uga Y, Kitomi Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S (2015b) A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8:8PubMedPubMedCentralCrossRefGoogle Scholar
  136. Umeda M, Umeda-Hara C, Yamaguchi M, Hashimoto J, Uchimiya H (1999) Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant Physiol 119:31–40PubMedPubMedCentralCrossRefGoogle Scholar
  137. Varney GT, McCully ME, Canny MJ (1993) Sites of entry of water into the symplast of maize roots. New Phytol 125:733–741CrossRefGoogle Scholar
  138. Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812PubMedPubMedCentralCrossRefGoogle Scholar
  139. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307PubMedCrossRefGoogle Scholar
  140. Wachsman G, Sparks EE, Benfey PN (2015) Genes and networks regulating root anatomy and architecture. New Phytol 208:26–38PubMedCrossRefGoogle Scholar
  141. Wang H, Inukai Y, Yamauchi A (2006a) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301CrossRefGoogle Scholar
  142. Wang H, Taketa S, Miyao A, Hirochika H, Ichii M (2006b) Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci 170:70–77CrossRefGoogle Scholar
  143. Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24PubMedCrossRefGoogle Scholar
  144. Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P (2009) Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant 2:823–831PubMedCrossRefGoogle Scholar
  145. Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P (2011) OsCAND1 is required for crown root emergence in rice. Mol Plant 4:289–299PubMedCrossRefGoogle Scholar
  146. Wang H, Xu X, Zhan X, Zhai R, Wu W, Shen X, Dai G, Cao L, Cheng S (2013) Identification of qRL7, a major quantitative trait locus associated with rice root length in hydroponic conditions. Breed Sci 63:267–274PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang C, Li S, Ng S, Zhang B, Zhou Y, Whelan J, Wu P, Shou H (2014a) Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J Exp Bot 65:4149–4157PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang S, Xu Y, Li Z, Zhang S, Lim JM, Lee KO, Li C, Qian Q, de Jiang A, Qi Y (2014b) OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.) Plant J 78:632–645PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang Y, Wang D, Gan T, Liu L, Long W, Wang Y, Niu M, Li X, Zheng M, Jiang L, Wan J (2016) CRL6, a member of the CHD protein family, is required for crown root development in rice. Plant Physiol Biochem 105:185–194PubMedCrossRefGoogle Scholar
  150. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedPubMedCentralCrossRefGoogle Scholar
  151. Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haseloff J, Scheres B (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev Cell 15:913–922PubMedCrossRefGoogle Scholar
  152. Won SK, Choi SB, Kumari S, Cho M, Lee SH, Cho HT (2010) Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells 30:369–376PubMedCrossRefGoogle Scholar
  153. Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136PubMedCrossRefGoogle Scholar
  154. Wu W, Cheng S (2014) Root genetic research, an opportunity and challenge to rice improvement. Field Crops Res 165:111–124CrossRefGoogle Scholar
  155. Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ (2007) Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiol 144:961–975PubMedPubMedCentralCrossRefGoogle Scholar
  156. Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681PubMedCrossRefGoogle Scholar
  157. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371PubMedPubMedCentralCrossRefGoogle Scholar
  158. Yamamoto Y, Inukai Y, Kitano H, Sazuka T, Matsuoka M (2010) Characterization and mapping of the CROWN ROOTLESS2 gene, CRL2, in rice. Rice Gen Newslett 25:25–26Google Scholar
  159. Yamamoto T, Uga Y, Yano M (2014) Genomics-assisted allele mining and its integration into rice breeding. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Heidelberg, pp 251–265CrossRefGoogle Scholar
  160. Yang XC, Hwa CM (2008) Genetic and physiological characterization of the OsCem mutant in rice: formation of connected embryos with multiple plumules or multiple radicles. Heredity 101:239–246PubMedCrossRefGoogle Scholar
  161. Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H (2005) Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol 138:1071–1082PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42:264–267PubMedCrossRefGoogle Scholar
  163. Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara K, Nagato Y, Itoh J-I (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J 78:927–936PubMedCrossRefGoogle Scholar
  164. Yu ZM, Kang B, He XW, Lü SL, Bai YH, Ding WN, Chen M, Cho HT, Wu P (2011) Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734CrossRefGoogle Scholar
  165. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yuo T, Toyota M, Ichii M, Taketa S (2009) Molecular cloning of a root hairless gene rth1 in rice. Breed Sci 59:13–20CrossRefGoogle Scholar
  167. Yuo T, Shiotani K, Shitsukawa MA, Hirochika H, Ichii M, Taketa S (2011) Root hairless 2 (rth2) mutant represents a loss-of-function allele of the cellulose synthase-like gene OsCSLD1 in rice (Oryza sativa L.) Breed Sci 61:225–233CrossRefGoogle Scholar
  168. Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z (2012a) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72:805–816PubMedCrossRefGoogle Scholar
  169. Zhang JW, Xu L, Wu YR, Chen XA, Liu Y, Zhu SH, Ding WN, Wu P, Yi KK (2012b) OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.) Mol Plant 5:176–186PubMedCrossRefGoogle Scholar
  170. Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhao Y, Cheng S, Song Y, Huang Y, Zhou S, Liu X, Zhou DX (2015a) The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell 27:2469–2483PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J (2015b) OsAUX1 controls lateral root initiation in rice (Oryza sativa L.) Plant Cell Environ 38:2208–2222PubMedCrossRefGoogle Scholar
  173. Zhu ZX, Liu Y, Liu SJ, Mao CZ, Wu YR, Wu P (2012) A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol Plant 5:154–161PubMedCrossRefGoogle Scholar
  174. Zou Y, Liu X, Wang Q, Chen Y, Liu C, Qiu Y, Zhang W (2014) OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta 1840:1676–1685PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Breeding Material Development Unit, Division of Basic ResearchInstitute of Crop Science, National Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.Laboratory of Plant Breeding & Genetics, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  3. 3.Department of International Agricultural Development, Graduate School of AgricultureTokyo University of AgricultureTokyoJapan

Personalised recommendations