Gene Network of Grain Size and Number in Rice

Chapter

Abstract

Grain size and number are two key components determining rice yield. As both phenotypes are characterized by quantitative traits, grain size and number are predominantly and tightly controlled by genetic factors. Several quantitative trait loci (QTLs) responsible for grain size and number have been molecularly identified and characterized. These QTLs may act in independent genetic pathways and, along with other identified genes for grain size and number, are mainly involved in the signaling pathways mediated by the ubiquitin-proteasome pathway, G-protein signaling, phytohormones, and transcriptional regulatory factors. Since many of these QTLs and genes were identified from modern elite varieties, they have been strongly selected for enhanced rice productivity in the breeding program. These findings have paved new ways for understanding the molecular basis of grain size and number and enable us to develop the desirable crops with high yield by precise design.

Keywords

Grain size Grain number Quantitative trait loci Phytohormone Transcription factor Rice 

Notes

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant 2016YFD0100401) and the National Natural Science Foundation of China (Grant 31571636). 

References

  1. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci U S A 96:10284–10289CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745CrossRefPubMedGoogle Scholar
  3. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2:15195CrossRefPubMedGoogle Scholar
  4. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015) Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2:15203CrossRefPubMedGoogle Scholar
  5. Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694CrossRefPubMedGoogle Scholar
  6. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171CrossRefPubMedGoogle Scholar
  7. Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci U S A 96:7575–7580Google Scholar
  8. Hu Z, He H, Zhang S, Sun F, Xin X, Wang W, Qian X, Yang J, Luo X (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol 54:979–990CrossRefPubMedGoogle Scholar
  9. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465CrossRefPubMedGoogle Scholar
  10. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497CrossRefPubMedGoogle Scholar
  11. Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226CrossRefPubMedGoogle Scholar
  12. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711CrossRefPubMedGoogle Scholar
  13. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefPubMedGoogle Scholar
  14. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32CrossRefPubMedGoogle Scholar
  16. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011a) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269CrossRefPubMedGoogle Scholar
  17. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011b) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9:1002–1013Google Scholar
  18. Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan MW, Li Y (2012) The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol 194:690–703CrossRefPubMedGoogle Scholar
  19. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng YQ, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110:3167–3172CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci U S A 112:11102–11107CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043CrossRefPubMedGoogle Scholar
  22. Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J (2013) Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–3759CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107:19579–19584CrossRefPubMedPubMedCentralGoogle Scholar
  24. Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852CrossRefPubMedGoogle Scholar
  25. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefPubMedGoogle Scholar
  26. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326CrossRefPubMedGoogle Scholar
  27. Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307:576–580CrossRefPubMedGoogle Scholar
  28. Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18:448–460CrossRefPubMedPubMedCentralGoogle Scholar
  29. Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3. Cell Res 22:1666–1680CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214CrossRefPubMedGoogle Scholar
  31. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028CrossRefPubMedGoogle Scholar
  32. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456CrossRefPubMedGoogle Scholar
  33. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630CrossRefPubMedGoogle Scholar
  34. Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci U S A 112:76–81CrossRefPubMedGoogle Scholar
  35. Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun C (2013) GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol 55:938–949PubMedGoogle Scholar
  36. Sun P, Zhang W, Wang Y, He Q, Shu F, Liu H, Wang J, Yuan L, Deng H (2016) OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol 58:836–847CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  38. Takano-Kai N, Jiang H, Powell A, McCouch S, Takamure I, Furuya N, Doi K, Yoshimura A (2013) Multiple and independent origins of short seeded alleles of GS3 in rice. Breed Sci 63:77–85Google Scholar
  39. Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y (2011) Suppression of the rice heterotrimeric G protein beta-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J 67:907–916CrossRefPubMedGoogle Scholar
  40. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279CrossRefPubMedGoogle Scholar
  41. Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99CrossRefPubMedGoogle Scholar
  42. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954CrossRefPubMedGoogle Scholar
  43. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954CrossRefPubMedGoogle Scholar
  44. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Ye W, Meng X, Liu R, Chen H, Jing Y, Zhu X, Li J, Qian Q (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948CrossRefPubMedGoogle Scholar
  45. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209CrossRefPubMedGoogle Scholar
  46. Wu Y, Fu Y, Zhao S, Gu P, Zhu Z, Sun C, Tan L (2016) CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386Google Scholar
  47. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442CrossRefPubMedGoogle Scholar
  48. Xu C, Liu Y, Li Y, Xu X, Li X, Xiao J, Zhang Q (2015) Differential expression of GS5 regulates grain size in rice. J Exp Bot 66:2611–2623CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yu Y, Wing RA, Li J (2013) Grain quality. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice. Springer, New York, pp 237–354CrossRefGoogle Scholar
  50. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109:21534–21539CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhou SR, Yin LL, Xue HW (2013) Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol 16:236–246CrossRefPubMedGoogle Scholar
  53. Zhou Y, Miao J, Gu H, Peng X, Leburu M, Yuan F, Gao Y, Tao Y, Zhu J, Gong Z, Yi C, Gu M, Yang Z, Liang G (2015) Natural variations in SLG7 regulate grain shape in rice. Genetics 201:1591–1599CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina

Personalised recommendations