Advertisement

Genetic and Molecular Dissection of Flowering Time Control in Rice

Chapter

Abstract

Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.) and is primarily controlled by quantitative trait loci (QTLs) that are associated with a photoperiodic response, particularly in short-day (SD) plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in clarifying the genetic control of flowering time because its modification is important for regional adaptation. The sequencing of the rice genome has facilitated genome-wide mapping of loci and gene cloning; thus, more progress has been made in elucidating the genetic control pathways of flowering. In this chapter, we provide an overview of the studies investigating rice flowering.

Keywords

Flowering time Genetic architecture Genetic pathway Photoperiod QTL Regional adaptation 

References

  1. Bian XF, Liu X, Zhao ZG et al (2011) Heading date gene, dth3 controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep 30:2243–2254CrossRefPubMedGoogle Scholar
  2. Brambilla V, Gomez-Ariza J, Cerise M et al (2017) The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front Plant Sci 8:665CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chandraratna MF (1953) A gene for photoperiod sensitivity in rice linked with apiculus colour. Nature 171:1162–1163CrossRefPubMedGoogle Scholar
  4. Chao LF (1928) Linkage studies in rice. Genetics 13:133–169PubMedPubMedCentralGoogle Scholar
  5. Chen J, Li X, Cheng C et al (2014) Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep 4:4263CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choi SC, Lee S, Kim SR et al (2014) Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol 164:1326–1337CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dai C, Xue HW (2010) Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J 29:1916–1927CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ebana K, Shibaya T, Wu J et al (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122:1199–1210CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fujino K, Wu J, Sekiguchi H et al (2010) Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Mol Gen Genomics 284:137–146CrossRefGoogle Scholar
  11. Fujino K, Yamanouchi U, Yano M (2013) Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet 126:611–618CrossRefPubMedGoogle Scholar
  12. Gao H, Zheng XM, Fei G et al (2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9:e1003281CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gao H, Jin M, Zheng X-M et al (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci 111:16337–16342CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garner WW, Allard HA (1920) Agricultural United States Department of Agriculture and for the association. J Agric Res XVIII:553–606Google Scholar
  15. Garner WW, Allard HA (1923) Further studies in photoperiodism, the response of the plant to relative length of day and night. J Agric Res XXIII:871–920Google Scholar
  16. Gómez-Ariza J, Galbiati F, Goretti D et al (2015) Loss of floral repressor function adapts rice to higher latitudes in Europe. J Exp Bot 66:2027–2039CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goretti D, Martignago D, Landini M et al (2017) Transcriptional and post-transcriptional mechanisms limit heading date 1 (Hd1) function to adapt rice to high latitudes. PLoS Genet 1:1–22Google Scholar
  18. Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and Rice. Plant Physiol 135:677–684CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504CrossRefPubMedGoogle Scholar
  20. Hayama R, Yokoi S, Tamaki S et al (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722CrossRefPubMedGoogle Scholar
  21. Hori K, Ogiso-Tanaka E, Matsubara K et al (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J 76:36–46PubMedPubMedCentralGoogle Scholar
  22. Hori K, Nonoue Y, Ono N et al (2015) Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biol 15:1–16CrossRefGoogle Scholar
  23. Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor Appl Genet 129:2241–2252CrossRefPubMedGoogle Scholar
  24. Hoshino Y (1915) On the inheritance of the flowering time in peas and rice. J Coll Agric Tohoku Imp Univ Sapporo, Japan 6:229–288Google Scholar
  25. Huang X, Zhao Y, Wei X et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39CrossRefGoogle Scholar
  26. Itoh H, Nonoue Y, Yano M et al (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638CrossRefPubMedGoogle Scholar
  27. Izawa T (2007) Daylength measurements by rice plants in photoperiodic short-day flowering. In: Kwang WJ (ed) International review of cytology. Academic, Cambridge, pp 191–222Google Scholar
  28. Izawa T, Oikawa T, Tokutomi S et al (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399CrossRefPubMedGoogle Scholar
  29. Jodon NE (1940) Inheritance and linkage relationships of a chlorophyll mutation in rice. Agron J 32:342–346CrossRefGoogle Scholar
  30. Kim SL, Lee S, Kim HJ et al (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145:1484–1494CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kojima S, Takahashi Y, Kobayashi Y et al (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105CrossRefPubMedGoogle Scholar
  32. Komiya R, Ikegami A, Tamaki S et al (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774CrossRefPubMedGoogle Scholar
  33. Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450CrossRefPubMedGoogle Scholar
  34. Koo BH, Yoo SC, Park JW et al (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888CrossRefPubMedGoogle Scholar
  35. Kwon CT, Yoo SC, Koo BH et al (2014) Natural variation in Early flowering1 contributes to early flowering in japonica rice under long days. Plant Cell Environ 37:101–112CrossRefPubMedGoogle Scholar
  36. Lee S, Kim J, Han JJ et al (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764CrossRefPubMedGoogle Scholar
  37. Lee YS, Jeong DH, Lee DY et al (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30PubMedGoogle Scholar
  38. Li Z, Pinson SRM, Stansel JW et al (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.) Theor Appl Genet 91:374–381PubMedGoogle Scholar
  39. Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003CrossRefGoogle Scholar
  40. Lin H, Ashikari M, Yamanouchi U et al (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41CrossRefGoogle Scholar
  41. Lu SJ, Wei H, Wang Y et al (2012) Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.) Plant Mol Biol Rep 30:1461–1469CrossRefGoogle Scholar
  42. Matsubara K, Yamanouchi U, Wang ZX et al (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene promotes flowering by up-regulating Ehd1. Plant Physiol 148:1425–1435CrossRefPubMedPubMedCentralGoogle Scholar
  43. Matsubara K, Yamanouchi U, Nonoue Y et al (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612CrossRefPubMedGoogle Scholar
  44. Matsubara K, Ogiso-Tanaka E, Hori K et al (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716CrossRefPubMedGoogle Scholar
  45. Matsuzaki J, Kawahara Y, Izawa T (2015) Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell 27:633–648CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakagawa H, Yamagishi J, Miyamoto N et al (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786CrossRefPubMedGoogle Scholar
  47. Naranjo L, Talón M, Domingo C (2014) Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes. BMC Genomics 15:101CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nemoto Y, Nonoue Y, Yano M et al (2016) Hd1, a CONSTANS orthlog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant J 86:221–233CrossRefPubMedGoogle Scholar
  49. Ogiso E, Takahashi Y, Sasaki T et al (2010) The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol 152:808–820CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ogiso-Tanaka E, Matsubara K, Yamamoto S et al (2013) Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One 8:e75959CrossRefPubMedPubMedCentralGoogle Scholar
  51. Onogi A, Watanabe M, Mochizuki T et al (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817CrossRefPubMedGoogle Scholar
  52. Peng LT, Shi ZY, Li L et al (2008) Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. J Plant Physiol 165:876–885CrossRefPubMedGoogle Scholar
  53. Ryu CH, Lee S, Cho LH et al (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427CrossRefPubMedGoogle Scholar
  54. Saito H, Ogiso-Tanaka E, Okumoto Y et al (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short-and long-day conditions. Plant Cell Physiol 53:717–728CrossRefPubMedGoogle Scholar
  55. Shibaya T, Nonoue Y, Ono N et al (2011) Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor Appl Genet 123:1133–1143CrossRefPubMedGoogle Scholar
  56. Shibaya T, Hori K, Ogiso-Tanaka E et al (2016) Hd18, encoding histone acetylase related to arabidopsis flowering locus D, is involved in the control of flowering time in rice. Plant Cell Physiol 57:1828–1838CrossRefPubMedGoogle Scholar
  57. Shrestha R, Gómez-Ariza J, Brambilla V et al (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot 114:1445–1458CrossRefPubMedPubMedCentralGoogle Scholar
  58. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464CrossRefPubMedGoogle Scholar
  59. Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408CrossRefPubMedPubMedCentralGoogle Scholar
  60. Takahashi Y, Shimamoto K (2011) Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genet Syst 86:175–182CrossRefPubMedGoogle Scholar
  61. Takahashi Y, Shomura A, Sasaki T et al (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98:7922–7927CrossRefPubMedPubMedCentralGoogle Scholar
  62. Takahashi Y, Teshima KM, Yokoi S et al (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A 106:4555–4560CrossRefPubMedPubMedCentralGoogle Scholar
  63. Takeuchi Y (2011) Developing isogenic lines of Japanese rice cultivar ‘Koshihikari’ with early and late heading. Jpn Agric Res 45:15–22CrossRefGoogle Scholar
  64. Takeuchi Y, Ebitani T, Yamamoto T et al (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413CrossRefGoogle Scholar
  65. Tamaki S, Matsuo S, Wong HL et al (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036CrossRefPubMedGoogle Scholar
  66. Tan J, Jin M, Wang J et al (2016) OsCOL10, a CONSTANS-like gene, functions as a flowering time repressor downstream of Ghd7 in rice. Plant Cell Physiol 57:798–812CrossRefPubMedGoogle Scholar
  67. Taoka K, Ohki I, Tsuji H et al (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335CrossRefPubMedGoogle Scholar
  68. Thomas B, Vince-Pure D (1997) Photoperiodism in plants, 2nd edn. Academic, San DiegoGoogle Scholar
  69. Tsuji H, Nakamura H, Taoka K (2013) Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol 54:385–397CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vergara BS, Chang TT (1985) The flowering response of the rice plant to photoperiod, 4th edn. IRRI, ManilaGoogle Scholar
  71. Wei X, Xu J, Guo H et al (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wu W, Zheng XM, Lu G et al (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci U S A 110:2775–2780CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xiao J, Li J, Yuan L et al (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244CrossRefPubMedGoogle Scholar
  74. Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767CrossRefPubMedGoogle Scholar
  75. Yamamoto T, Lin H, Sasaki T et al (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891PubMedPubMedCentralGoogle Scholar
  76. Yan WH, Wang P, Chen HX et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330CrossRefPubMedGoogle Scholar
  77. Yang J, Lee S, Hang R et al (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J 73:566–578CrossRefPubMedGoogle Scholar
  78. Yano M, Harushima Y, Nagamura Y et al (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032CrossRefGoogle Scholar
  79. Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yano M, Kojima S, Takahashi Y et al. (2001) Genetic control of flowering time in rice, a short day plant. Plant Physiol 127: 1425–1429Google Scholar
  81. Yano K, Yamamoto E, Aya K et al (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–936CrossRefPubMedGoogle Scholar
  82. Yokoo T, Saito H, Yoshitake Y et al (2014) Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS One 9:e96064CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yoshitake Y, Yokoo T, Saito H et al (2015) The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci Rep 5:7709CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zheng XM, Feng L, Wang J et al (2015) Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. J Integr Plant Biol 58:540–548CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhu S, Wang J, Cai M et al (2017) The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. J Exp Bot 68:553–568PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Crop Science, NAROTsukubaJapan

Personalised recommendations