Skip to main content

Integration of Soft Computing Approach in Plant Biology and Its Applications in Agriculture

  • Chapter
  • First Online:

Abstract

Soft computing is a modern approach for analysis of complex problems. In agricultural field for complex problems, we require conventional methods which can give cost-effective, analytical and complete solutions. The past few decades have witnessed extensive research in the field of soft computing. In retrospect to development in agricultural sector, various analytical methods like artificial neural networks, support vector machines, fuzzy logic, decision trees and many more have been designed. These methods help to analyze soil and water regimes which are directly involved in crop growth, food processing and also help in precision farming. This review will provide an overview of the integration of soft computing approach in various fields of biology. Moreover, an extensive review of future prospects of soft computing in agriculture in particular and plant biology in general. In this book chapter, co-relation between soil and water as well as crop management has been discussed. The book chapter has been made more reader friendly and easily understandable by incorporation of appropriate diagrams providing detailed study on integration of soft computing approach in plant biology and its applications in agriculture in an easy and illustrative manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andriyas S, Negi SC, Rudra RP, Yang SX (2003) Modelling total suspended solids in vegetative filter strips using artificial neural networks. Trans ASABE 032079. 10.13031/2013.13770

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  • Charniak E (1991) Bayesian networks without tears. AI Mag 12(4):50–63

    Google Scholar 

  • Chen Q, Zhao J, Cai J, Wang X (2006a) Study on identification of tea using computer vision based on support vector machine. Chin J Scient Instru 27(12):1704–1706

    Google Scholar 

  • Chen Y, Zheng J, Xiang H, Huang S (2006b) Study on an intelligent system for precision pesticide application based on fuzzy control and machine vision. Trans ASABE 061129. 10.13031/2013.20631

  • Chtioui Y, Panigrahi S, Backer LF (2003) Self-organizing map combined with a fuzzy clustering for color image segmentation of edible beans. Trans ASAE 46(3):831–838

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species, vol 46. John Murray, London. 10.13031/2013.13577

    Google Scholar 

  • Eerikäinen T, Linko P, Linko S, Siimes T, Zhu YH (1993) Fuzzy logic and neural networks applications in food science and technology. Trends Food Sci Tech 4:237–242. https://doi.org/10.1016/0924-2244(93)90137-Y

    Article  Google Scholar 

  • Fu X, Ying Y, Xu H, Yu H (2008) Support vector machines and near infrared spectroscopy for quantification of vitamin C content in kiwifruit. Trans ASABE 085204. 10.13031/2013.24721

  • Gago J, Landín M, Gallego PP (2010a) Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L. J Plant Physiol 167:1226–1231. https://doi.org/10.1016/j.jplph.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  • Gago J, Martínez-Núñez L, Landín M, Gallego PP (2010b) Strengths of artificial neural networks in modelling complex plant processes. Plant Signal Behav 5(6):1–3. https://doi.org/10.4161/psb.5.6.11702

    Article  Google Scholar 

  • Gago J, Landín M, Gallego PP (2010c) A neurofuzzy logic approach for modelling plant processes: a practical case of in vitro direct rooting and acclimatization of Vitis vinifera L. Plant Sci 179:241–249. https://doi.org/10.1016/j.plantsci.2010.05.009

    Article  CAS  Google Scholar 

  • Genetic Algorithms in Search, Optimization, and Machine Learning. Choice Reviews Online 27.02 (1989): 27–0936–27–0936. doi:https://doi.org/10.5860/choice.27-0936

  • Glezakos TJ, Moschopoulou G, Tsiligiridis TA, Kintzios S, Yialouris CP (2010) Plant virus identification based on neural networks with evolutionary preprocessing. Comput Electron Agric 70:263–275. https://doi.org/10.1016/j.compag.2009.09.007

    Article  Google Scholar 

  • Goel PK, Andriyas S, Rudra RP, Negi SC (2004) Modeling sediment and phosphorous movement through vegetative filter strips using artificial neural networks and GRAPH. Trans ASAE 042263. 10.13031/2013.17674

  • Hancock KM, Zhang Q (2006) A hybrid approach to hydraulic vane pump condition monitoring and fault detection. Trans ASABE 49(4):1203–1211. 10.13031/2013.21720

    Article  Google Scholar 

  • Horikawa S, Furuhashi T, Uchikaw Y (1992) On fuzzy modelling using fuzzy neural networks with back propagation algorithm. IEEE Trans Neural Netw 3(5):801–806. https://doi.org/10.1109/72.159069

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40:w04302. https://doi.org/10.1029/2003wr002355

    Article  Google Scholar 

  • Jang RJS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  • Jiang L, Zhu B, Jing H, Chen X, Rao X, Tao Y (2007) Gaussian mixture model-based walnut shell and meat classification in hyperspectral fluorescence imagery. Trans ASABE 50(1):153–160. 10.13031/2013.22388

    Article  Google Scholar 

  • Jindal VK, Srisawas W (2001) Acoustic testing of snack food texture. Trans ASAE 016038. 10.13031/2013.5541

  • Kanchan S, Mehrotra R, Chowdhury S (2014) Evolutionary pattern of four representative DNA repair proteins across six model organisms: an in silico analysis. Netw Model Anal Health Inform Bioinform 3(1):70. https://doi.org/10.1007/s13721-014-0070-1

    Article  Google Scholar 

  • Kanchan S, Mehrotra R, Chowdhury S (2015) In silico study of endonuclease III protein family identifies key residues and processes during evolution. J Mol Evol 81:54–67. https://doi.org/10.1007/s00239-015-9689-5

    Article  CAS  PubMed  Google Scholar 

  • Karimi Y, Prasher SO, Patel RM, Kim SH (2006) Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput Electron Agric 51(1–2):99–109. https://doi.org/10.1016/j.compag.2005.12.001

    Article  Google Scholar 

  • Kesheri M, Kanchan S, Richa SRP (2014) Isolation and in silico analysis of Fe-superoxide dismutase in Nostoc commune. Gene 553(2):117–125. https://doi.org/10.1016/j.gene.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  • Kesheri M, Kanchan S, Chowdhury S, Sinha RP (2015a) Secondary and Tertiary Structure Prediction of Proteins: A Bioinformatic Approach. In: Zhu Q, Azar AT (eds.), Complex system modelling and control through intelligent soft computations, Studies in Fuzziness and Soft Computing. Vol 319, Springer-Verlag Germany, pp 541–569. doi:https://doi.org/10.1007/978-3-319-12883-2_19

  • Kesheri M, Kanchan S, Richa SRP (2015b) Computational methods and strategies for protein structure prediction. In: Sinha RP, Richa Rastogi RP (eds) Biological sciences: innovations and dynamics. New India Publishing Agency, New Delhi, pp 277–291

    Google Scholar 

  • Kesheri M, Sinha RP, Kanchan S (2016) Advances in soft computing approaches for gene prediction: a bioinformatics approach. In: Dey N, Bhateja V, Hassanien AE (eds) Advancements in bio-medical sensing, imaging, measurements and instrumentation, vol 651. Springer, Berlin, pp 383–405

    Google Scholar 

  • Kesheri M, Kanchan S, Sinha RP (2017) Exploring the potentials of antioxidants in retarding ageing. In: Benjamin S, Sarath Josh MK (eds) Examining the development, regulation, and consumption of functional foods. IGI Global, Hershey, pp 166–195. https://doi.org/10.4018/978-1-5225-0607-2.ch008

    Chapter  Google Scholar 

  • Kumari A, Kanchan S, Kesheri M (2016) Applications of bio-molecular databases in bioinformatics. In: Dey N, Bhateja V, Hassanien AE (eds) Advancements in bio-medical sensing, imaging, measurements and instrumentation, vol 651. Springer, Berlin, pp 329–351. https://doi.org/10.1007/978-3-319-33793-7_15

    Google Scholar 

  • Lakshmi G, Sudheer KP, Chaubey I (2006) Auto calibration of complex watershed models using simulation-optimization framework. Trans ASABE 062126. 10.13031/2013.20715

  • Lamorski K, Pachepsky Y, Slawinski C, Walczak RT (2008) Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci Am J 72:1243–1247. https://doi.org/10.2136/sssaj2007.0280n

    Article  CAS  Google Scholar 

  • Lee KH, Zhang N, Das S (2003) Comparing adaptive neuro-fuzzy inference system (ANFIS) to partial least-squares (PLS) method for simultaneous prediction of multiple soil properties. Trans ASAE 033144. 10.13031/2013.15017

  • Lestander TA, Leardi R, Geladi P (2003) Selection of near-infrared wavelengths using genetic algorithms for the determination of seed moisture content. J Near Infrared Spec 11(4):433–446. https://doi.org/10.1255/jnirs.394

    Article  CAS  Google Scholar 

  • Li X, He Y, Wu C (2008) Least square support vector machine analysis for the classification of paddy seeds by harvest year. Trans ASABE 51(5):1793–1799. 10.13031/2013.25294

    Article  Google Scholar 

  • Li F, Mistele B, Hu Y, Chen X, Schmidhalter U (2014) Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur J Agron 52:198–209. https://doi.org/10.1016/j.eja.2013.09.006

    Article  CAS  Google Scholar 

  • Liu J, Goering CE, Tian L (2001) A neural network for setting target corn yields. Trans ASAE 44(3):705–713. 10.13031/2013.6097

    Google Scholar 

  • Liua Y, Wanga H, Zhanga H, Libera K (2016) A comprehensive support vector machine-based classification model for soil quality assessment. Soil Till Res 155:19–26. https://doi.org/10.1016/j.still.2015.07.006

    Article  Google Scholar 

  • Madeiro SS, Oliveira FR, Alexandre FBA, Neto FB (2006) Intelligent modelling of sugar-cane maturation. In: Proceedings of the 4th world congress conference on computers in agriculture and natural resources, Orlando 642–648. doi:10.13031/2013.21950

  • Magee JF (1964) Decision trees for decision making. Harv Bus Rev 42:126–138

    Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Transac Geosci Remote Sens 42(8):1778–1790. https://doi.org/10.1109/TGRS.2004.831865

    Article  Google Scholar 

  • Meyer GE, Hindman TW, Jones DD, Mortensen DA (2004) Digital camera operation and fuzzy logic classification of uniform plant, soil, and residue color images. Appl Eng Agric 20(4):519–529. 10.13031/2013.16482

    Article  Google Scholar 

  • Miu PI, Perhinschi MG (2001) Optimal design and process of threshing units based on a genetic algorithm. II. Application. Trans ASAE 013125. 10.13031/2013.7431

  • Morimoto T, Tu K, Hatou K, Hashimoto Y (2003) Dynamic optimization using neural networks and genetic algorithms for tomato cool storage to minimize water loss. Trans ASAE 46(4):1151–1159. 10.13031/2013.13938

    Article  Google Scholar 

  • Nahvia B, Habibib J, Mohammadic K, Shamshir bandd S, Razgane OSA (2016) Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Comput Electron Agric 124:150–160. https://doi.org/10.1016/j.compag.2016.03.025

    Article  Google Scholar 

  • Neto JC, Meyer GE, Jones DD, Surkan AJ (2003) Adaptive image segmentation using a fuzzy neural network and genetic algorithm for weed detection. Trans ASAE 033088. 10.13031/2013.13854

  • Nie J, Linkens D (1992) Neural network–based approximate reasoning: principles and implementation. Int J Control 56(2):399–413. https://doi.org/10.1080/00207179208934320

    Article  Google Scholar 

  • Odhiambo LO, Yoder RE, Yoder D (2001a) Estimation of reference crop evapotranspiration using fuzzy state models. Trans ASAE 44(3):543–550. 10.13031/2013.6114

    Article  Google Scholar 

  • Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001b) Optimization of fuzzy evapotranspiration model through neural training with input–output examples. Trans ASAE 44(6):1625–1633. 10.13031/2013.7049

    Article  Google Scholar 

  • Oliveira FR, Pacheco DF, Leonel A, Neto FB (2006) Intelligent support decision in sugarcane harvest. In: Proceedings of the 4th world congress conference on computers in agriculture and natural resources, Orlando, FL, pp 456–462. 10.13031/2013.21917

    Google Scholar 

  • Onaran I, Pearson TC, Yardimci Y, Cetin AE (2006) Detection of under developed hazelnuts from fully developed nuts by impact acoustics. Trans ASABE 49(6):1971–1976. 10.13031/2013.22277

    Article  Google Scholar 

  • Oommen T, Misra D, Agarwal A, Mishra SK (2007) Analysis and application of support vector machine based simulation for runoff and sediment yield. Trans ASABE 073019. https://doi.org/10.1016/j.biosystemseng.2009.04.017

  • Ovaska SJ, Vanlandingham HF, Kamiya A (2002) Fusion of soft computing and hard computing in industrial applications: an overview. Ieee T Syst Man Cyb 32(2):72–79

    Article  Google Scholar 

  • Pearson TC, Wicklow DT (2006) Detection of corn kernels infected by fungi. Trans ASABE 49(4):1235–1245. 10.13031/2013.21723

    Article  Google Scholar 

  • Petkovića D, Gocicb M, Trajkovicb S, Shamshirbandc S, Motamedid S, Hashimd R, Bonakdari H (2015) Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Comput Electron Agric 114:277–284. https://doi.org/10.1016/j.compag.2015.04.012

    Article  Google Scholar 

  • Pierna JAF, Baeten V, Dardenne P (2006) Screening of compound feeds using NIR hyperspectral data. Chemometr Intell Lab Syst 84:114–118. https://doi.org/10.1016/j.chemolab.2006.03.012

    Article  Google Scholar 

  • Prasad VSS, Dutta Gupta S (2008) Applications and potentials of artificial neural networks in plant tissue culture. In: Gupta D, Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer-Verlag, Berlin, pp 47–67. https://doi.org/10.1007/1-4020-3694-9_3

    Google Scholar 

  • Priya P, Kesheri M, Sinha RP, Kanchan S (2016) Molecular dynamics simulations for biological systems. In: Karâa W. B. A., Dey N. (eds.), Biomedical image analysis and mining techniques for improved health outcomes, advances in bioinformatics and biomedical engineering (ABBE) series. IGI Global, USA 286–313. doi:https://doi.org/10.4018/978-1-5225-1762-7.ch040

  • Qi L, Ma X (2009) Rice blast detection using multispectral imaging sensor and support vector machine. Trans ASABE 095891. 10.13031/2013.26985

  • Rumelhart DE, McClelland JL (1986) Parallel distributed processing: explorations in the microstructures of cognition, vol I. MIT Press, Cambridge, MA

    Google Scholar 

  • Rumpfa T, Mahleinb A-K, Steinerb U, Oerkeb E-C, Dehneb H-W, Plümera L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74(1):91–99. https://doi.org/10.1016/j.compag.2010.06.009

    Article  Google Scholar 

  • Shao Y, Zhao C, He Y, Bao Y (2009) Application of infrared spectroscopy technique and chemometrics for measurement of components in rice after radiation. Appl Eng Agric 52(1):187–192. 10.13031/2013.25929

    Google Scholar 

  • Simpson PK, Jahns G (1993) Fuzzy min–max neural networks for function approximation. In: proc. IEEE Int Conf Neural Netw 3:1967–1972. https://doi.org/10.1109/ICNN.1993.298858

    Article  Google Scholar 

  • Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124. https://doi.org/10.1016/j.tplants.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  • Takagi T, Hayashi I (1991) NN-driven fuzzy reasoning. Int J Approx Reason 5(3):191–212

    Article  Google Scholar 

  • Teorey TJ (1999) Database modeling and design. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Tian Y, Zhang C, Li C (2004) Study on plant disease recognition using support vector machine and chromaticity moments. Trans Chi Soci Agric Machin 35(3):95–98

    Google Scholar 

  • Tikk D, Koczy LT, Gedeon TD (2003) A survey on universal approximation and its limits in soft computing techniques. Int J Approx Reason 33(2):185–202. https://doi.org/10.1016/s0888-613x(03)00021-5

    Article  Google Scholar 

  • Trebar M, Steele M (2008) Application of distributed SVM architectures in classifying forest data cover types. Comput Electron Agric 63(2):119–130. https://doi.org/10.1016/j.compag.2008.02.001

    Article  Google Scholar 

  • Twarakavi NKC, Simune k J, Schaap MG (2009) Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Sci Am J 73:1443–1452. https://doi.org/10.2136/sssaj2008.0021

    Article  CAS  Google Scholar 

  • Wang W, Paliwal J (2006) Spectral data compression and analyses techniques to discriminate wheat classes. Trans ASABE 49(5):1607–1612. 10.13031/2013.22035

    Article  Google Scholar 

  • Werea KB, Buic DT, Dicka ØB, Singh BR (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol Indic 52:394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

    Article  Google Scholar 

  • Whittaker A D, Park B S, McCauley J D, Huang Y (1991) Ultrasonic signal classification for beef quality grading through neural networks. In: Automated agriculture for the 21st century Trans ASAE, pp 116–125

    Google Scholar 

  • Witten IH, Frank E (2000) Data mining: practical machine learning tools and techniques with JAVA implementations. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Wu D, Feng L, He Y, Bao Y (2008) Variety identification of Chinese cabbage seeds using visible and near-infrared spectroscopy. Trans ASABE 51(6):2193–2199. 10.13031/2013.25382

    Article  Google Scholar 

  • Xiang H, Tian LF (2007) Artificial intelligence controller for automatic multispectral camera parameter adjustment. Trans ASABE 50(5):1873–1881. 10.13031/2013.23939

    Article  Google Scholar 

  • Yang J, Gong W, Shi S, Du L, Sun J, Ma Y-Y, Song S-L (2015) Accurate identification of nitrogen fertilizer application of paddy rice using laser-induced fluorescence combined with support vector machine. Plant Soil Environ 61(11):501–506. 10.17221/496/2015-PSE

    Article  CAS  Google Scholar 

  • Yu H, Niu X, Ying Y, Pai X (2008) Non-invasive determination of enological parameters of rice wine by Vis-NIR spectroscopy and least squares support vector machines. ASABE 084875. 10.13031/2013.24669

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern SMC-3:28–44. https://doi.org/10.1109/tsmc.1973.5408575

    Article  Google Scholar 

  • Zadeh LA (1981) Possibility theory and soft data analysis. In: Cobb L, Thrall RM (eds) Mathematical frontiers of the social and policy sciences. Westview Press, Boulder, pp 69–129

    Google Scholar 

  • Zhang Q, Litchfield JB (1992) Advanced process controls: applications of adaptive, fuzzy and neural control to the food industry. In: Food processing automation II. Trans ASAE, pp 169–176

    Google Scholar 

  • Zhang H, Paliwal J, Jayas DS, White NDG (2007) Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine. Trans ASABE 50(5):1779–1785. 10.13031/2013.23935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarna Kanchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, A., Kesheri, M., Sinha, R.P., Kanchan, S. (2018). Integration of Soft Computing Approach in Plant Biology and Its Applications in Agriculture. In: Purohit, H., Kalia, V., More, R. (eds) Soft Computing for Biological Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-7455-4_16

Download citation

Publish with us

Policies and ethics