Skip to main content

Conditional Moment Closure Methods for Turbulent Non-premixed Combustion

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Combustion

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 2560 Accesses

Abstract

Computational models for engineering applications need to be both accurate and computationally efficient. Turbulent flows with combustion cannot be directly solved due to the wide range of spatial scales and the large number of reactive scalars. In non-premixed systems, strong correlations exist between the value reactive scalar and the mixing between the fuel and oxidiser. Conditional moment closure (CMC) methods assumed that conditional fluctuations around a single scalar (in non-premixed flows the mixture fraction) are small. Using this assumption, CMC models derive Eulerian transport equations for the conditioned scalars that can be solved efficiently. This chapter will introduce the CMC method in non-premixed combustion and its formulations in RANS and LES, with the modelling of the unclosed terms and relevant algorithms. Next, the chapter will review recent progress in CMC modelling of auto-ignition, flame stabilisation and extinction; including recent applications in engines and gas turbine combustion, as well as theoretical developments on double conditioning, differential diffusion and spray combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayache S, Mastorakos E (2011) Flow Turb Combust 88(1–2):207

    Google Scholar 

  • Beguier C, Dekeyser I, Launder BE (1978) Phys Fluids 21(3):307

    Google Scholar 

  • Bilger RW (1993) Phys Fluids A-Fluid Dyn 5:436

    Google Scholar 

  • Bilger RW (2010) Combust Flame (2010)

    Google Scholar 

  • Bilger RW (1993) Phys Fluids A 5:436

    Google Scholar 

  • Bilger RW, Pope SB, Bray KNC, Driscoll J (2005) Proc Combust Inst 30(1):21

    Google Scholar 

  • Bolla M, Farrace D, Wright YM, Boulouchos K (2014) Fuel 117:309

    Google Scholar 

  • Borghesi G, Mastorakos E, Devaud CB, Bilger RW (2011) Combust Theor Model 15(5):725

    Google Scholar 

  • Bottone F, Kronenburg A, Gosman D, Marquis A (2012) Flow Turb Combust 89(4):651

    Google Scholar 

  • Branley N, Jones WP (2001) Combust Flame 127(1–2):1914

    Google Scholar 

  • Bushe K, Steiner H (1999) Phys Fluids A 11:1896

    Google Scholar 

  • Ciottoli PP (2013) Conditional moment for LES of compressible turbulent reactive flows. Sapienza University, Phd

    Google Scholar 

  • Cleary MJ, Kent JH (2005) Combust Flame 143:357

    Google Scholar 

  • Cleary MJ, Klimenko AY (2011) Phys Fluids 115102:1

    Google Scholar 

  • Colucci P, Jaberi F, Givi P, Pope S (1998) Phys Fluids 10:499

    Google Scholar 

  • De Paola G, Mastorakos E, Wright YM, Boulouchos K (2008) Combust Sci Technol 180(5):883

    Google Scholar 

  • Devaud CB, Bray KNC (2003) Combust Flame 132(4):102

    Google Scholar 

  • Devaud CB, Bray KNC (2003) Combust Flame 132:102

    Article  Google Scholar 

  • Fairweather A, Woolley R (2003) Combust Flame 133:393

    Google Scholar 

  • Floyd J, Kempf AM, Kronenburg A, Ram RH (2009) Combust Theor Model 13(4):559

    Google Scholar 

  • Fureby C (2009) Philosophical transactions. Ser A, Math Phys Eng Sci 367(1899):2957

    Google Scholar 

  • Garmory A, Mastorakos E (2011) Proc Combust Inst 33:1673

    Google Scholar 

  • Garmory A, Mastorakos E (2013) Int J Heat Fluid Flow 39:53

    Google Scholar 

  • Garmory A, Mastorakos E (2015) Proc Combust Inst 35(2):1207

    Google Scholar 

  • Girimaji SS (1992) Phys Fluids A 4:2529

    Article  Google Scholar 

  • Giusti A, Kotzagianni M, Mastorakos E (2016) Flow Turb Combust 97(4):1165

    Google Scholar 

  • Hewson JC, Ricks AJ, Tieszen SR, Kerstein AR, Fox RO (2006) Conditional-moment closure with differential diffusion for soot evolution in fire. Tech Rep, Centre Turbulence Research

    Google Scholar 

  • Jones WP, Navarro-Martinez S (2007) Combust Flame 150:170

    Google Scholar 

  • Kim S, Huh Y (2002) Combust Flame 130:94

    Google Scholar 

  • Kim S, Huh K, Fraser R (2000) Proc Combust Inst 28:185

    Google Scholar 

  • Kim S, Huh K, Tao L (2000) Combust Flame 120:75

    Google Scholar 

  • Klimenko AY, Bilger R (1999) Prog Energy Combust Sci 25:595

    Google Scholar 

  • Klimenko AY, Pope SB (2003) Phys Fluids 15(7):1907

    Google Scholar 

  • Klimenko AY (1990) Fluid Dyn 25:327

    Article  Google Scholar 

  • Klimenko AY (1995) Phys Fluids 7(2):446

    Google Scholar 

  • Kronenburg A (2004) Phys Fluids 16(7):2640

    Google Scholar 

  • Kronenburg A, Bilger RW, Kent JH (2000) Combust Flame 121:24

    Google Scholar 

  • Kronenburg A, Bilger RW (2001) Combust Sci Technol 166(1):195

    Google Scholar 

  • Kronenburg A, Kostka M (2005) Combust Flame 143(4):342

    Google Scholar 

  • Kronenburg A, Mastorakos E (2010) The conditional moment closure method, vol 95. Springer Science & Business. Media, pp 91–114

    Google Scholar 

  • Kronenburg A, Stein OT (2017) Flow Turb Combust 98(3):803

    Google Scholar 

  • Kuo KK (1986) Principles of combustion. Wiley

    Google Scholar 

  • Kuznetsov VR, Sabel’nikov VA (1990) Turbulent combustion. Taylor and Francis

    Google Scholar 

  • Lignell D, Hewson J, Chen J (2009) Proc Combust Inst 32(1):1491

    Google Scholar 

  • LøvÃ¥s T, Navarro-Martinez S, Rigopoulos S (2011) Proc Combust Inst 863–889

    Google Scholar 

  • Lu T, Law CK (2009) Prog Energy Combust Sci 35(2):192

    Google Scholar 

  • Mastorakos E, Bilger R (1998) Phys Fluids 10:1246

    Google Scholar 

  • Mortensen M, Bilger RW (2009) Combust Flame 156:62

    Article  Google Scholar 

  • Navarro-Martinez S, Kronenburg A (2007) Proc Combust Inst 31:1721

    Google Scholar 

  • Navarro-Martinez S, Kronenburg A (2009) Proc Combust Inst 32:1509

    Google Scholar 

  • Navarro-Martinez S, Kronenburg A (2011) Flow Turb Combust 87(2):377406

    Google Scholar 

  • Navarro-Martinez S, Kronenburg A, di Mare F (2005) Flow Turb Combust 75:245

    Google Scholar 

  • Navarro-Martinez S, Rigopoulos S (2011) Flow Turb Combust 89(2):311

    Google Scholar 

  • O’Brien EE, Jiang TL (1991) Phys Fluids A 3:3121

    Google Scholar 

  • Patwardhan SS, De S, Lakshmisha KN, Raghunandan BN (2009) Proc Combust Inst 32:1705

    Google Scholar 

  • Peters N (1984) Prog Energy Combust Sci 10:319

    Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press

    Google Scholar 

  • Pitsch H (2006) Annu Rev Fluid Mech 38(1):453

    Google Scholar 

  • Poinsot T, Veynante D (2001). Theoretical and numerical combustion. R.T. Edwards, Inc

    Google Scholar 

  • Pope SB (2013) Proc Combust Inst 34(1):1

    Google Scholar 

  • Roomina MR, Bilger RW (1999) Combust Theor Model 3:689

    Google Scholar 

  • Roomina M, Bilger R (2001) Combust Flame 125:1176

    Google Scholar 

  • Seo J, Huh KY (2011) Proc Combust Inst 33:2127

    Google Scholar 

  • Shin DH, Richardson ES (2015) In: CD-Rom Proceedings. European Combustion Meeting, Hungary

    Google Scholar 

  • Siwaborworn P, Kronenburg A (2013) Conservative implementation of LES-CMC for turbulent jet flames. Springer, Berlin Heidelberg, pp 159–173

    Google Scholar 

  • Stanković I, Triantafyllidis A, Mastorakos E, Lacor C, Merci B (2011) Flow Turb Combust 86(2):689710

    Google Scholar 

  • Swaminathan N, Bilger RW (2001) Combust Theor Model 5(2):241

    Google Scholar 

  • Thornber B, Bilger RW, Masri AR, Hawkes ER (2011) J Comput Phys 230(20):7687

    Google Scholar 

  • Triantafyllidis A, Mastorakos E (2009) Flow Turb Combust 84(3):481

    Google Scholar 

  • Tyliszczak A (2013) Arch Mech 97–129

    Google Scholar 

  • Ukai S, Kronenburg A, Stein OT (2015) Proc Combust Inst 35(2):1667

    Google Scholar 

  • Woolley RM, Fairweather M (2009) Yunardi Fuel 88:393

    Google Scholar 

  • Wright YM, Boulouchos K, Paola GD, Mastorakos E, Int SAE (2009) J Engines 2:714

    Google Scholar 

  • Wright YM, DePaola G, Boulouchos K, Mastorakos E (2005) Combust Flame 143:402

    Google Scholar 

  • Zhang H, Mastorakos E (2016) Flow Turb Combust 863–889

    Google Scholar 

  • Zoby M, Navarro-Martinez S, Kronenburg A, Marquis AJ (2011) Int J Heat Fluid Flow 32(3):499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Navarro-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro-Martinez, S. (2018). Conditional Moment Closure Methods for Turbulent Non-premixed Combustion. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics