Skip to main content

Modeling of Turbulent Premixed Flames Using Flamelet-Generated Manifolds

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Efficient and reliable numerical models have become important tools in the design and optimization process of modern combustion equipment. For accurate predictions of flame stability and pollutant emissions, the use of detailed comprehensive chemical models is required. This accuracy, unfortunately, comes at a very high computational cost. The flamelet-generated manifold (FGM) method is a chemical reduction technique which lowers this burden drastically, but retains most of the accuracy of the comprehensive model. In this chapter, the theoretical background of FGM is briefly reviewed. Its application in simulations of premixed and partially premixed flames is explained. Extra attention is given to the modeling of preferential diffusion effects that arise in lean premixed methane–hydrogen–air flames. The effect of preferential diffusion on the burning velocity of stretched flames is investigated and it is shown how these effects can be included in the FGM method. The impact of preferential diffusion on flame structure and turbulent flame speed is analyzed in direct numerical simulations of premixed turbulent flames. Finally, the application of FGM in large-eddy simulations is briefly reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht BA, Zahirovic S, Bastiaans RJM, van Oijen JA, de Goey LPH (2008) A premixed flamelet-PDF model for biomass combustion in a grate furnace. Energy Fuels 22(3):1570–1580

    Article  Google Scholar 

  • Bekdemir C, Somers B, de Goey P (2014) DNS with detailed and tabulated chemistry of engine relevant igniting systems. Combust Flame 161(1):210–221

    Article  Google Scholar 

  • Boger M, Veynante D, Boughanem H, Trouvé A (1998) Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc Combust Inst 27:917–925

    Article  Google Scholar 

  • Bongers H, van Oijen JA, Somers LMT, de Goey LPH (2005) The flamelet-generated manifold method applied to steady planar partially premixed counterflow flames. Combust Sci Technol 177(12):2373–2393

    Article  Google Scholar 

  • Bradley D, Kwa LK, Lau AKC, Missaghi M (1988) Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust Flame 71:109–122

    Article  Google Scholar 

  • Christo FC, Masri AR, Nebot EM (1996) Artificial neural network implementation of chemistry with PDF simulation of \({\rm H}_{2}/{\rm CO}_{2}\) flames. Combust Flame 106:406–427

    Google Scholar 

  • Cook AW, Riley JJ (1994) A subgrid model for equilibrium chemistry in turbulent flows. Phys Fluids 6(8):2868–2870

    Article  Google Scholar 

  • Delhaye S (2009) Incorporating unsteady flow-field effects in flamelet-generated manifolds. PhD thesis, Eindhoven University of Technology

    Google Scholar 

  • Delhaye S, Somers LMT, van Oijen JA, de Goey LPH (2008) Incorporating unsteady flow-effects in flamelet-generated manifolds. Combust Flame 155:133–144

    Article  Google Scholar 

  • Domingo P, Vervisch L, Payet S, Hauguel R (2005) DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust Flame 143(4):566–586

    Article  Google Scholar 

  • Donini A, Bastiaans RJM, van Oijen JA, de Goey LPH (2015) Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames. Proc Combust Inst 35:831–837

    Article  Google Scholar 

  • Donini A, Bastiaans RJM, van Oijen JA, de Goey LPH (2016) A 5-d implementation of fgm for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor. Flow Turbul Combust 68(3):887–922

    Google Scholar 

  • Duwig C (2007) Study of a filtered flamelet formulation for large eddy simulation of premixed turbulent flames. Flow Turbul Combust 79:433–454

    Article  MATH  Google Scholar 

  • Filatyev SA, Driscoll JF, Carter CD, Donbar JM (2005) Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust Flame 141:1–21

    Article  Google Scholar 

  • Fiorina B, Gicquel O, Vervisch L, Carpentier S, Darabiha N (2005) Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust Flame 140(3):147–160

    Article  Google Scholar 

  • Fiorina B, Mercier R, Kuenne G, Ketelheun A, Avdić A, Janicka J, Geyer D, Dreizler A, Alenius E, Duwig C, Trisjono P, Kleinheinz K, Kang S, Pitsch H, Proch F, Marincola FC, Kempf A (2015) Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust Flame 162:4262–4282

    Google Scholar 

  • Fiorina B, Veynante D, Candel S (2015) Modeling combustion chemistry in large eddy simulation of turbulent flames. Flow Turbul Combust 94(3):3–42

    Article  Google Scholar 

  • Fiorina B, Vicquelin R, Auzillon P, Darabiha N, Gicquel O, Veynante D (2010) A filtered tabulated chemistry model for LES of premixed combustion. Combust Flame 157(3):465–475

    Article  Google Scholar 

  • Floyd J, Kempf AM, Kronenburg A, Ram RH (2009) A simple model for the filtered density function for passive scalar combustion LES. Combust Theory Modelling 13(4):559–588

    Article  MATH  Google Scholar 

  • de Goey LPH, ten Thije Boonkkamp JHM (1997) A mass-based definition of flame stretch with finite thickness. Combust Sci Technol 122:399–405

    Article  Google Scholar 

  • de Goey LPH, ten Thije Boonkkamp JHM (1999) A flamelet description of premixed laminar flames and the relation with flame stretch. Combust Flame 119:253–271

    Article  Google Scholar 

  • Hernández-Pérez FE, Yuen FTC, Groth CPT, Gülder OL (2011) LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc Combust Inst 33:1365–1371

    Article  Google Scholar 

  • Ihme M, Shunn L, Zhang J (2012) Regularization of reaction progress variable for application to flamelet-based combustion models. J Comput Phys 231:7715–7721

    Google Scholar 

  • Jha PK, Groth CP (2012) Tabulated chemistry approaches for laminar flames: evaluation of flame-prolongation of ILDM and flamelet methods. Combust Theory Modelling 16(1):31–57

    Article  MATH  Google Scholar 

  • Ketelheun A, Kuenne G, Janicka J (2013) Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul Combust 91:867–893

    Google Scholar 

  • Knudsen E, Kim SH, Pitsch H (2010) An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Phys Fluids 22:115109

    Google Scholar 

  • Kuenne G, Ketelheun A, Janicka J (2011) LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust Flame 158:1750–1767

    Article  Google Scholar 

  • Kuenne G, Seffrin F, Fuest F, Stahler T, Ketelheun A, Geyer D, Janicka J, Dreizler A (2012) Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust Flame 159:2669–2689

    Article  Google Scholar 

  • Law CK, Sung CJ (2000) Structure, aerodynamics, and geometry of premixed flamelets. Prog Energy Combust Sci 26:459–505

    Article  Google Scholar 

  • Maas U, Pope SB (1994) Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Combust Inst 25:1349–1356

    Article  Google Scholar 

  • Matalon M (1983) On flame stretch. Combust Sci Technol 31:169–181

    Article  Google Scholar 

  • Meier W, Duan XR, Weigand P (2006) Investigations of swirl flames in a gas turbine model combustor II. turbulence/chemistry interactions. Combust Flame 144:225–236

    Article  Google Scholar 

  • Moureau V, Domingo P, Vervisch L (2011) From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust Flame 158:1340–1357

    Article  Google Scholar 

  • Moureau V, Fiorina B, Pitsch H (2009) A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust Flame 156:801–812

    Article  Google Scholar 

  • Mukhopadhyay S, Bastiaans RJM, van Oijen JA, de Goey LPH (2015a) Analysis of a filtered flamelet approach for coarse DNS of premixed turbulent combustion. Fuel 144:388–399

    Google Scholar 

  • Mukhopadhyay S, van Oijen JA, de Goey LPH (2015b) A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance. Fuel 159:728–740

    Google Scholar 

  • Niu YS, Vervisch L, Taoa PD (2013) An optimization-based approach to detailed chemistry tabulation: automated progress variable definition. Combust Flame 160:776–785

    Article  Google Scholar 

  • van Oijen JA (2002) Flamelet-generated manifolds: development and application to premixed laminar flames. PhD thesis, Eindhoven University of Technology

    Google Scholar 

  • van Oijen JA, Bastiaans RJM, de Goey LPH (2010) Modelling preferential diffusion effects in premixed methane-hydrogen-air flames by using flamelet-generated manifolds. In: Sequeira A, Pereira JCF (eds) Fifth European conference on computational fluid dynamics. Lisbon, Portugal

    Google Scholar 

  • van Oijen JA, Donini A, Bastiaans RJM, ten Thije Boonkkamp JHM, de Goey LPH (2016) State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog Energy Combust Sci 57:30–74

    Article  Google Scholar 

  • van Oijen JA, de Goey LPH (2000) Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci Technol 161:113–138

    Article  Google Scholar 

  • van Oijen JA, de Goey LPH (2002) Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust Theory Model 6:463–478

    Article  Google Scholar 

  • van Oijen JA, de Goey LPH (2004) A numerical study of confined triple flames using a flamelet-generated manifold. Combust Theory Model 8:141–163

    Article  MathSciNet  MATH  Google Scholar 

  • van Oijen JA, Lammers FA, de Goey LPH (2001) Modelling of complex premixed premixed burner systems using flamelet-generated manifolds. Combust Flame 127:2124–2134

    Article  Google Scholar 

  • Olbricht C, Stein OT, Janicka J, van Oijen JA, Wysocki S, Kempf AM (2012) LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry. Fuel 96:100–107

    Article  Google Scholar 

  • Peters N (1986) Laminar flamelet concepts in turbulent combustion. Proc Combust Inst 21:1231–1250

    Article  Google Scholar 

  • Poinsot T, Veynante D (2011) Theoretical and numerical combustion, 3rd edn

    Google Scholar 

  • Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theory Model 1:41–63

    Article  MathSciNet  MATH  Google Scholar 

  • Pope SB (2013) Small scales, many species and the manifold challenges of turbulent combustion. Proc Combust Inst 34:1–31

    Article  Google Scholar 

  • Proch F, Kempf AM (2015) Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc Combust Inst 35:33373345

    Article  Google Scholar 

  • Ramaekers WJS, van Oijen JA, de Goey LPH (2012) Stratified turbulent bunsen flames: flame surface analysis and flame surface density modelling. Combust Theory Model 16(6):943–975

    Article  Google Scholar 

  • Seffrin F, Fuest F, Geyer D, Dreizler A (2010) Flow field studies of a new series of turbulent premixed stratified flames. Combust Flame 157:384–396

    Article  Google Scholar 

  • Shunn L (2009) Large-eddy simulation of combustion systems with convective heat-loss. PhD thesis, Stanford University

    Google Scholar 

  • Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner WC, Lissianski VV, Qin Z (2017) GRI-Mech 3.0 reaction mechanism. http://www.me.berkeley.edu/gri_mech/

  • de Swart JAM (2009) Modeling and analysis of flame stretch and preferential diffusion in premixed flames. PhD thesis, Eindhoven University of Technology

    Google Scholar 

  • de Swart JAM, Groot GRA, van Oijen JA, ten Thije Boonkkamp JHM, de Goey LPH (2006) Detailed analysis of the mass burning rate of stretched flames including preferential diffusion effects. Combust Flame 145:245–258

    Article  Google Scholar 

  • Trisjono P, Kleinheinz K, Kang S, Pitsch H (2014) Large eddy simulation of stratified and sheared flames of a premixed turbulent stratified flame burner using a flamelet model with heat loss. Flow Turbul Combust 92:201–235

    Google Scholar 

  • Turanyi T (1994) Parameterization of reaction mechanisms using orthogonal polynomials. Comp Chem 18(1):45–54

    Article  Google Scholar 

  • Vermorel O, Richard S, Colin O, Angelberger C, Benkenida A, Veynante D (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust Flame 156:1525–1541

    Google Scholar 

  • Vicquelin R, Fiorina B, Payet S, Darabiha N, Gicquel O (2011) Coupling tabulated chemistry with compressible cfd solvers. Proc Combust Inst 33:1481–1488

    Google Scholar 

  • Vreman AW, Albrecht BA, van Oijen JA, de Goey LPH, Bastiaans RJM (2008) Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust Flame 153:394–416

    Article  Google Scholar 

  • Vreman AW, Bastiaans RJM, Geurts BJ (2009) A similarity subgrid model for premixed turbulent combustion. Flow Turbul Combust 82:233–248

    Article  MATH  Google Scholar 

  • Vreman AW, van Oijen JA, de Goey LPH, Bastiaans RJM (2009) Direct numerical simulation of hydrogen addition in turbulent premixed Bunsen flames using flamelet generated manifold reduction. Int J Hydrogen Energy 34:2778–2788

    Article  MATH  Google Scholar 

  • Vreman AW, van Oijen JA, de Goey LPH, Bastiaans RJM (2009) Subgrid scale modeling in large-eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow Turbul Combust 82:511–535

    Article  MATH  Google Scholar 

  • Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Investigation of swirl flames in a gas turbine model combustor I. flow/field, structures, temperature and species distributions. Combust Flame 144:205–224

    Article  Google Scholar 

  • Weise S, Messig D, Meyer B, Hasse C (2013) An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions. Combust Theory Model 17(3):411–430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. van Oijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Oijen, J.A. (2018). Modeling of Turbulent Premixed Flames Using Flamelet-Generated Manifolds. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics