Skip to main content

Direct Numerical Simulations for Combustion Science: Past, Present, and Future

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Combustion

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Gayed RG, Bradley D, Lawes M (1987) Turbulent burning velocities: a general correlation in terms of straining rates. Proc R Soc London A 1847:389–413

    Article  Google Scholar 

  • Alshaalan TM, Rutland CJ (1998) Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc Combust Inst 27:793–799

    Article  Google Scholar 

  • Arias PG, Im HG, Narayanan P, Trouvé A (2011) A Computational study of nonpremixed flame extinction by water spray. Proc Combust Inst 33:2591–2597

    Article  Google Scholar 

  • Ashurst WT, Kerstein AR, Kerr RM, Gibson CH (1987) Alignment of vorticity and scalar gradient with strain in simulated Navier-Stokes turbulence. Phys Fluids 30:2343–2353

    Google Scholar 

  • Aspden AJ, Bell JB, Day MS, Woosley SE, Zingale M (2008) Turbulence-flame interactions in type Ia supernovae. Astrophys J 689(2)

    Google Scholar 

  • Aspden AJ, Day MS, Bell JB (2011a) Characterization of low Lewis number flames. Proc Combust Inst 33:1463–1471

    Article  Google Scholar 

  • Aspden AJ, Day MS, Bell JB (2011b) Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J Fluid Mech 680:287–320

    Article  MATH  Google Scholar 

  • Aspden AJ, Day MS, Bell JB (2011c) Lewis number effects in distributed flames. Proc Combust Inst 33:1473–1480

    Article  Google Scholar 

  • Aspden AJ, Day MS, Bell JB (2015) Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc Combust Inst 35:1321–1329

    Article  Google Scholar 

  • Baum M, Poinsot T, Haworth D, Darabiha N (1994) Using direct numerical simulations to study H2/O2/N2 flames with complex chemistry in turbulent flows. J Fluid Mech 281:1–32

    Google Scholar 

  • Bedat B, Egolfopoulos F, Poinsot T (1999) Direct numerical simulation of heat release and NOx formation in turbulent non premixed flames. Combust Flame 119:69–83

    Article  Google Scholar 

  • Bell JB, Collela P, Glaz HM (1989) A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85:257–283

    Google Scholar 

  • Bell JB, Day MS, Grcar JF, Lijewski MJ, Driscoll JF, Filatyev SA (2007) Numerical simulation of a laboratory-scale turbulent slot flame. Proc Combust Inst 27:1299–1307

    Article  Google Scholar 

  • Bennett JC, Abbasi H, Bremer P-T, Grout R, Gyulassy A, Jin T, Klasky S, Kolla H, Parashar M, Pascucci V, Pebay P, Thompson D, Yu H, Zhang F, Chen JH (2012) Combining in-situ and in-transit processing to enable extreme-scale scientific analysis. In: Proceedings of the international conference on high performance computing, networking, storage and analysis, SC ’12, pp 49:1–49:9, Los Alamitos, CA, USA. IEEE Computer Society Press

    Google Scholar 

  • Bobbitt B, Blanquart G (2016) Vorticity isotropy in high Karlovitz number premixed flames. Phys Fluids 28:105101

    Article  Google Scholar 

  • Bradley D (1992) How fast can we burn? Proc Combust Inst 24:247–262

    Article  Google Scholar 

  • Bradley D (2002) Problems of predicting turbulent burning rates. Combust Theory Model 6(2):361–382

    Article  Google Scholar 

  • Bradley D, Lawes M, Mansour MS (2011) The problems of the turbulent burning velocity. Flow Turbul Combust 87:191–204

    Article  MATH  Google Scholar 

  • Bruneaux G, Akselvoll K, Poinsot T, Ferziger JH (1996) Flame-wall interaction simulation in a turbulent channel flow. Combust Flame 107:27–44

    Article  Google Scholar 

  • Buckmaster J (2002) Edge flames. Prog Energy Combust Sci 28:435–475

    Google Scholar 

  • Carlsson H, Yu R, Bai XS (2014) Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int J Hydrogen Energy 39:20216–20232

    Article  Google Scholar 

  • Carlsson H, Yu R, Bai XS (2015) Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc Combust Inst 35:1425–1432

    Article  Google Scholar 

  • Chatakonda O, Hawkes ER, Aspden AJ, Kerstein AR, Kolla H, Chen JH (2013) On the fractal characteristics of low Damköhler number flames. Combust Flame 160:2422–2433

    Article  Google Scholar 

  • Chaudhuri S, Wu F, Zhu D, Law CK (2012) Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys Rev Lett 108:044503

    Article  Google Scholar 

  • Chen JH (2011) Petascale direct numerical simulation of turbulent combustion—fundamental insights towards predictive models. Proc Combust Inst 33:99–123

    Article  Google Scholar 

  • Chen JH, Echekki T, Kollman W (1998) The mechanism of two-dimensional pocket formation in lean premixed methane air flames with implications for turbulent combustion. Combust Flame 116:15–48

    Article  Google Scholar 

  • Chen JH, Im HG (1998) Correlation of flame speed with stretch in turbulent premixed methane/air flames. In: 27th international symposium on combustion, vol 27, The Combustion Institute, pp 819–826

    Google Scholar 

  • Chen JH, Im HG (2000) Stretch effects on the burning velocity of turbulent premixed hydrogen-air flames. Proc Combust Inst 28:211–218

    Article  Google Scholar 

  • Coppola G, Coriton B, Gomez A (2009) Highly turbulent counterflow flames: a laboratory scale benchmark for practical systems. Combust Flame 156:1834–1843

    Article  Google Scholar 

  • Cuenot B, Poinsot T (1994) Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. In: 25th proceedings of the symposium (international) on combustion, Irvine, pp 1383–1390

    Google Scholar 

  • Dabireau F, Cuenot B, Vermorel O, Poinsot T (2003) Interaction of flames of H2 + O2 with inert walls. Combust Flame 135:123–133

    Article  Google Scholar 

  • Desjardins O, Moureau V, Pitsch H (2008) An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J Comput Phys 18:8395–8416

    Article  MathSciNet  MATH  Google Scholar 

  • Domingo P, Vervisch L (1996) Triple flames and partially premixed combustion in autoignition of non-premixed mixtures. In: 26th symposium (international) on combustion, The Combustion Institute, Pittsburgh, pp 233–240

    Google Scholar 

  • Driscoll JF (2008) Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog Energy Combust Sci 34:91–134

    Article  Google Scholar 

  • Echekki T, Chen JH (1996) Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust Flame 106:184–202

    Article  Google Scholar 

  • Echekki T, Chen JH (1998) Structure and propagation of methanol-air triple flames. Combust Flame 114:231–245

    Article  Google Scholar 

  • Egolfopoulos FN, Campbell CS (1996) Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response. J Fluid Mech 318:1–29

    Article  MATH  Google Scholar 

  • Eswaran V, Pope S (1988) An examination of forcing in direct numerical simulations of turbulence. Comput Fluids 16(3):257–278

    Article  MATH  Google Scholar 

  • Favier V, Vervisch L (2001) Edge flames and partially premixed combustion in diffusion flame quenching. Combust Flame 125:788–803

    Article  Google Scholar 

  • Grout RW, Gruber A, Kolla H, Bremer P-T, Bennett JC, Gyulassy A, Chen JH (2012) A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates. J Fluid Mech 706(10):351–383

    Article  MATH  Google Scholar 

  • Gruber A, Sankaran R, Hawkes ER, Chen JH (2010) Turbulent flame-wall interaction: a direct numerical simulation study. J Fluid Mech 658:5–32

    Article  MATH  Google Scholar 

  • Gruber A, Chen JH, Valiev D, Law CK (2012) Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J Fluid Mech 709:516–542

    Article  MATH  Google Scholar 

  • Hamlington PE, Poludnenko AY, Oran ES (2011) Interactions between turbulence and flames in premixed reacting flows. Phys Fluids 23:125111

    Article  Google Scholar 

  • Hamlington PE, Poludnenko AY, Oran ES (2012) Intermittency in premixed turbulent reacting flows. Phys Fluids 24:075111

    Article  Google Scholar 

  • Hawkes ER, Chatakonda O, Kolla H, Kerstein AR, Chen JH (2012) A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust Flame 159:2690–2703

    Article  Google Scholar 

  • Hawkes ER, Sankaran R, Chen JH, Kaiser SA, Frank JH (2009) An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proc Combust Inst 32:1455–1463

    Article  Google Scholar 

  • Haworth D, Cuenot B, Poinsot T, Blint R (2000) Numerical Simulation of turbulent propane-air combustion with non homogeneous reactants. Combust Flame 121:395–417

    Article  Google Scholar 

  • Hilbert R, Thevenin D (2002) Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust Flame 128:22–37

    Article  Google Scholar 

  • Hilbert R, Tap F, El-Rabii H, Thévenin D (2004) Impact of detailed chemistry and transport models on turbulent combustion simulations. Prog Energy Combust Sci 30:61–117

    Article  Google Scholar 

  • Huan X, Marzouk YM (2013) Simulation-based optimal Bayesian experimental design for nonlinear systems. J Comput Phys 232(1):288–317

    Article  MathSciNet  Google Scholar 

  • Im HG, Arias PG, Chaudhuri S, Uranakara H (2016) Direct numerical simulations of statistically stationary turbulent premixed flames. Combust Sci Technol 188(8):1182–1198

    Article  Google Scholar 

  • Im HG, Bechtold JK, Law CK (1995) Counterflow diffusion flames with unsteady strain rates. Combust Sci Technol 106:345–361

    Article  Google Scholar 

  • Im HG, Chen JH, Law CK (1998) Ignition of hydrogen/air mixing layer in turbulent flows. In: 27th international symposium on combustion, The Combustion Institute, vol 27, pp 1047–1056

    Google Scholar 

  • Im HG, Chen JH (1999) Structure and propagation of triple flames in partially premixed hydrogen/air mixtures. Combust Flame 119:436–454

    Article  Google Scholar 

  • Im HG, Chen JH (2001) Effects of flow strain on triple flame propagation. Combust Flame 126:1384–1392

    Article  Google Scholar 

  • Jenkins KW, Cant RS (2002) Curvature effects on flame kernels in a turbulent environment. Proc Combust Inst 29:2023–2029

    Article  Google Scholar 

  • Jenkins KW, Klein M, Chakraborty N, Cant RS (2006) Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime. Combust Flame 145:415–434

    Article  Google Scholar 

  • Jimenez C, Cuenot B, Poinsot T, Haworth D (2002) Numerical simulation and modeling for lean 
stratified propane-air flames. Combust Flame 128:1–21

    Google Scholar 

  • Kee RJ, Rupley FM, Miller JA (1989) Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia Report SAND-89-8009

    Google Scholar 

  • Kim J, Moin P, Moser RD (1987) Turbulence statistics in fully-developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  MATH  Google Scholar 

  • Kim, Y.J., Lee, B.J., Im, H.G. 2017. Scale effect on dynamics of meso-scale bluff-body-stabilized flames in lean premixed hydrogen-air and syngas-air mixtures. In: Fourteenth international conference on flow dynamics, Sendai, Japan, 1–3 Nov, 2017

    Google Scholar 

  • Lapointe S, Savard B, Blanquart G (2015) Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust Flame 162(9):3341–3355

    Article  Google Scholar 

  • Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer

    Google Scholar 

  • Lebas R, Menard T, Beau PA, Berlemont A, Demoulin FX (2009) Numerical simulation of primary break-up and atomization: DNS and modelling study. Int J Multiph Flow 35:247–260

    Article  Google Scholar 

  • Lee ED, Yoo CS, Chen JH, Frank JH (2010) Effect of NO on extinction and re-ignition of vortex-perturbed hydrogen flames. Combust Flame 157:217–229

    Article  Google Scholar 

  • Lee S, Lele SK, Moin P (1991) Simulations of spatially decaying compressible turbulence. Center for Turbulence Research, NASA Ames/Stanford University, Manuscript 126

    Google Scholar 

  • Lignell DO, Chen JH, Smith PJ, Lu T, Law CK (2007) The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation. Combust Flame 151:2–28

    Article  Google Scholar 

  • Lignell DO, Chen JH, Smith PJ (2008) Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame. Combust Flame 155:316–333

    Article  Google Scholar 

  • Lipatnikov AN, Chomiak J (2002) Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog Energy Combust Sci 28:1–74

    Article  Google Scholar 

  • Lipatnikov AN, Chomiak J (2005) Molecular transport effects on turbulent flame propagation and structure. Prog Energy Combust Sci 31:1–73

    Article  MATH  Google Scholar 

  • Lipatnikov AN, Chomiak J (2010) Effects of premixed flames on turbulence and turbulent scalar transport. Prog Energy Combust Sci 36:1–102

    Article  Google Scholar 

  • Liu CC, Shy SS, Peng MW, Chiu CW, Dong Y-C (2012) High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers. Combust Flame 159:2608–2619

    Article  Google Scholar 

  • Lu TF, Yoo CS, Chen JH, Law CK (2010) Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in a heated coflow: a chemical explosive mode analysis. J Fluid Mech 652:45–64

    Article  MATH  Google Scholar 

  • Mahalingam S, Chen JH, Vervisch L (1995) Finite-rate chemistry and transient effects in simulations of turbulent non-premixed flames. Combust Flame 102:285

    Article  Google Scholar 

  • Mastorakos E, Baritaud TA, Poinsot TJ (1997) Numerical simulations of autoignition in turbulent mixing flows. Combust Flame 109:198–223

    Google Scholar 

  • Matalon M (1983) On flame stretch. Combust Sci Technol 31:169–181

    Article  Google Scholar 

  • Mashayek F (1998) Droplet-turbulence interactions in low Mach number homogeneous shear two-phase flows. J Fluid Mech 367:163–203

    Article  MATH  Google Scholar 

  • Minamoto Y, Fukushima N, Tanahashi M, Miyauchi T, Dunstan TD, Swaminathan N (2011) Effect of flow-geometry on turbulence-scalar interaction in premixed flames. Phys Fluids 23:125107

    Article  Google Scholar 

  • Minamoto Y, Swaminathan N, Cant RS, Leung T (2014) Reaction zones and their structure in MILD combustion. Combust Sci Technol 186(8):1075–1096

    Article  Google Scholar 

  • Mizobuchi Y, Tachibana S, Shinjo J, Ogawa S, Takeno T (2002) A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc Combust Inst 29:2009–2015

    Article  Google Scholar 

  • Mizobuchi Y, Shinjo J, Ogawa S, Takeno T (2005) A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc Combust Inst 30:611–619

    Article  Google Scholar 

  • Modest MF (2013) Radiative heat transfer, 3rd edn. Academic Press

    Google Scholar 

  • Moin P, Mahesh K (1998) Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech 40:539–578

    Article  MathSciNet  Google Scholar 

  • Mueller ME, Blanquart G, Pitsch H (2009) Hybrid method of moments for modeling soot formation and growth. Combust Flame 156:1143–1155

    Article  Google Scholar 

  • Najm HN, Knio OM, Paul PH, Wyckoff PS (1998) A study of flame observables in premixed methane-air flames. Combust Sci Technol 140:369–403

    Article  Google Scholar 

  • Nikolaou ZM, Swaminathan N (2015) Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Combust Sci Technol 187:1759–1789

    Article  Google Scholar 

  • O’Brien J, Towery CAZ, Hamlington PE, Ihme M, Poludnenko AY, Urzay J (2017) The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc Combust Inst 36:1967–1975

    Article  Google Scholar 

  • Pascucci V, Scorzelli G, Summa B, Bremer PT, Gyulassy A, Christensen C, Philip S, Kumar S (2012) The ViSUS visualization framework, Chapter 19. Chapman & Hall/CRC Computational Science, pp 401–414

    Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press

    Google Scholar 

  • Poinsot T (1996) Using direct numerical simulations to understand premixed turbulent combustion. Proc Combust Inst 26:219–232

    Article  Google Scholar 

  • Poinsot T, Candel S, Trouvé A (1995) Applications of direct numerical simulation to premixed turbulent combustion. Prog Energy Combust Sci 21:531–576

    Article  Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion. 2nd edn. RT Edwards, Inc.

    Google Scholar 

  • Poinsot T, Veynante D, Candel S (1991) Quenching processes and premixed turbulent combustion diagrams. J Fluid Mech 228:561–606

    Google Scholar 

  • Poinsot T, Haworth DC, Bruneaux G (1993) Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust Flame 95:118–132

    Article  Google Scholar 

  • Pope SB (1987) Turbulent premixed flames. Annu Rev Fluid Mech 19:237–270

    Article  Google Scholar 

  • Rogallo RS (1981) Numerical experiments in homogeneous turbulence. NASA TM-81315

    Google Scholar 

  • Rogallo RS, Moin P (1984) Numerical simulation of turbulent flows. Annu Rev Fluid Mech 16:99–137

    Google Scholar 

  • Ronney PD (1995) Modeling in combustion science. Lect Notes Phys 449:1–22

    Article  Google Scholar 

  • Rutland CJ, Ferziger JH (1991) Simulations of flame-vortex interactions. Combust Flame 84:343–360

    Article  Google Scholar 

  • Rutland CJ, Cant RS (1994) Turbulent transport in premixed flames. In Proceedings of the summer program center for turbulence research, NASA Ames/Stanford University

    Google Scholar 

  • Salenbauch S, Sirignano M, Marchisio D, Pollack M, D’Anna A, Hasse C (2017) Detailed particle nucleation modeling in a sooting ethylene flame using a conditional quadrature method of moments (CQMOM). Proc Combust Inst 36:771–779

    Article  Google Scholar 

  • Sankaran R, Hawkes ER, Chen JH, Lu TF, Law CK (2007) Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc Combust Inst 27:1291–1298

    Article  Google Scholar 

  • Sankaran R, Hawkes ER, Yoo CS, Chen JH (2015) Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane-air jet flames. Combust Flame 162:3294–3306

    Article  Google Scholar 

  • Sarkar S, Erlebacher G, Hussaini MY (1991) Direct simulation of compressible turbulence in a shear flow. Theor Comput Fluid Dyn 2:291–305

    Article  MATH  Google Scholar 

  • Savard B, Blanquart G (2015) Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust Flame 162:2020–2033

    Article  Google Scholar 

  • Savard B, Bobbitt B, Blanquart G (2015) Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proc Combust Inst 35:1377–1384

    Article  Google Scholar 

  • Shim YS, Fukushima N, Shimura M, Nada Y, Tanahashi M, Miyauchi T (2013) Radical fingering in turbulent premixed flame classified into thin reaction zones. Proc Combust Inst 34:1383–1391

    Article  Google Scholar 

  • Tanahashi M, Nada Y, Ito Y, Miyauchi T (2002) Local flame structure in the well-stirred reactor regime. Proc Combust Inst 29:2041–2049

    Article  Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc R Soc London 164(919):476–490

    Article  MATH  Google Scholar 

  • Tomboulides A (2013) DNS of Flame Propagation Phenomena, ERCOFTAC Spring Festival, Toulon

    Google Scholar 

  • Trouve A, Poinsot T (1994) The evolution equation for the flame surface density in turbulent premixed combustion. J Fluid Mech 278:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Vervisch L, Hauguel R, Domingo P, Rullaud M (2004) Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. J Turbul 5:004

    Article  Google Scholar 

  • Wabel TM, Skiba AW, Temme JE, Driscoll JF (2017) Measurements to determine the regimes of premixed flames in extreme turbulence. Proc Combust Inst 36:1809–1816

    Article  Google Scholar 

  • Wacks DH, Chakraborty N, Klein M, Arias PG, Im HG (2016) Flow topologies in different regimes of premixed turbulent combustion: a direct numerical simulation analysis. Phys Rev Fluids 1:083401

    Article  Google Scholar 

  • Wang H, Hawkes ER, Chen JH (2017) A direct numerical simulaiton study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame. Combust Flame 180:110–123

    Article  Google Scholar 

  • Williams FA (1985) Combustion theory, 2nd edn. Westview Press

    Google Scholar 

  • Yoo CS, Im HG (2005) Transient dynamics of edge flames in a laminar nonpremixed hydrogen-air counterflow. Proc Combust Inst 30:349–356

    Article  Google Scholar 

  • Yoo CS, Im HG (2007) Transient soot dynamics in turbulent nonpremixed ethylene-air counterflow flames. Proc Combust Inst 31:701–708

    Article  Google Scholar 

  • Yoo CS, Richardson ES, Sankaran R, Chen JH (2011) A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly heated coflow. Proc Combust Inst 33:1619–1627

    Article  Google Scholar 

Download references

Acknowledgements

The author was sponsored by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong G. Im .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Im, H.G. (2018). Direct Numerical Simulations for Combustion Science: Past, Present, and Future. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics