Skip to main content

Combustion in Supersonic Flows and Scramjet Combustion Simulation

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The scramjet (supersonic combustion ramjet) is an air-breathing engine with the supersonic flow at the combustor entrance, i.e., with essentially lower deceleration of flow in the inlet with respect to common ramjet. The scramjet is designed for hypersonic flight of vehicle with Mach number large than 5 or 6, where the efficiency of a subsonic ramjet decreases, because the deceleration of high-speed flow to small subsonic speeds leads to extremely high temperature at the entrance to combustor, that, in its turn, generates a series of effects, deteriorating the performance of classical ramjet. The scramjet is characterized by strong coupling of all its elements. Supersonic core from the inlet to the nozzle, essential subsonic zones in thick boundary layers and high losses caused by strong shock waves, by viscous effects, by dissociation and radiation result in a situation, when positive thrust may be reached only on the basis of joint optimization of the whole flowpath. In comparison with experimental investigations, which remain very challenging to conduct in such flow conditions, computational fluid dynamics is an attractive complementary tool for the study supersonic reactive flow in the scramjet flowpath. Understanding and prediction of the flow structure are necessary for achieving the stable and efficient combustion, high thrust, and thermostable construction of the scramjet. The first half of the chapter addresses fundamentals of turbulent supersonic combustion: physics of combustion in supersonic flows with regard to scramjets, Navier--Stokes equations for multispecies reacting gas flow, kinetic schemes for simulation of scramjets, RANS/URANS, and LES approaches, the closure problems for turbulent fluxes. Particular attention is paid to the discussion of the difficulties when resolving closure problems for reaction rates. The contemporary models to account for turbulence-chemistry interactions (TCI) are shortly presented. The second half of the chapter focuses on partially stirred reactor (PaSR) turbulent combustion models. Transported PaSR (TPaSR) and unsteady PaSR models are described in details, and experience of their application to simulation of experiments on supersonic combustion (within the framework of LES approach) is demonstrated. Finally, the problem of the selection of “correct” solution among multiple solutions of PaSR steady-state equations is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allmaras SR, Johnson FT (2012) Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model. In: Seventh international conference on computational fluid dynamics (ICCFD7), pp 1–11

    Google Scholar 

  • Annamalai K, Puri IK (2006) Combustion science and engineering. CRC press

    Google Scholar 

  • Babushenko DI, Kopchenov VI, Titova NS, Starik AM (2015) Prediction ability of reaction mechanisms for modeling of continuously rotating detonation in propane-air mixture. Combust Explos 8(1):164–172 (In Russian)

    Google Scholar 

  • Babulin AA, Bosnyakov SM, Vlasenko VV, Engulatova MF, Matyash SV, Mikhailov SV (2016) Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge. Comp Math Math Phys 56(6):1020–1033

    Article  MathSciNet  MATH  Google Scholar 

  • Baldwin B, Lomax H (1978) Thin-layer approximation and algebraic model for separated turbulent flows. In: 16th aerospace sciences meeting, p 257

    Google Scholar 

  • Bardina J (1983) Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows. Ph.D. dissertation. Stanford University

    Google Scholar 

  • Bardina J, Ferziger JH, Reynolds WC (1980) Improved subgrid scale models for large eddy simulation. AIAA paper, pp 80–1357

    Google Scholar 

  • Barnett HC, Hibbard RR (1957) Basic considerations in the combustion of hydrocarbon fuels with air. NACA-TR-1300, p 273

    Google Scholar 

  • Basevich VY, Frolov SM (2006) Global kinetic mechanisms for simulation of multi-stage self-ignition of hydrocarbons in reactive flows. Russian J Chem Phys 25(6):54–62

    Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge Univ. Press

    Google Scholar 

  • Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A 199:238

    Article  MATH  Google Scholar 

  • Bensow R, Fureby C (2007) On the justification and extension of mixed models in LES. J Turb 8(54):1

    MathSciNet  MATH  Google Scholar 

  • Berglund M, Fureby C (2007) LES of supersonic combustion in a scramjet engine model. Proc Combus Inst 31(2):2497–2504

    Google Scholar 

  • Berglund M, Fedina E, Fureby C, Tegnér J, Sabelnikov V (2010) Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA Journal 48(3):540–550

    Google Scholar 

  • Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large eddy simulation of turbulent flows. Scientific computation, vol XVIII, p 348. Springer

    Google Scholar 

  • Bilger RW (1993) Conditional moment closure for turbulent reacting flow. Phys Fluids A 5:436

    Article  MATH  Google Scholar 

  • Bosnyakov IS, Mikhaylov SV, Morozov AN, Podaruev VY, Troshin AI, Vlasenko VV, Garcia-Uceda A, Hirsch C (2015) Implementation of high-order discontinuous Galerkin method for solution of practical tasks in external aerodynamics and aeroacoustics. In: IDIHOM: industrialization of high-order methods-a top-down approach. Notes on numerical fluid mechanics and multidisciplinary design, vol 128, pp 337–379. Springer International Publishing

    Google Scholar 

  • Bose T (2012) Airbreathing propulsion. Springer

    Google Scholar 

  • Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Argonne National Laboratory, Argonne, IL, p 417

    Book  Google Scholar 

  • Burrows MC, Kurkov AP (1973) Analytical and experimental study of supersonic combustion of hydrogen in a vitiated air stream. NASA TM X-2828

    Google Scholar 

  • Chapman DR (1979) Computational aerodynamics development and outlook. AIAA Journal 17(12):1293–1313

    Article  MATH  Google Scholar 

  • Chapuis M, Fedina E, Fureby C, Hannemann K, Karl S, Martinez Schramm J (2013) A computational study of the HyShot II combustor performance. Proc Combus Inst 34:2101–2109

    Google Scholar 

  • Charlette F, Meneveau C, Veynante D (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: non-dynamic formulation and initial tests. Combust Flame 131:159

    Article  Google Scholar 

  • Cheng J, Wehrmeyer R, Pitz WJ, Jarrett O, Northam G (1994) Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen—air diffusion flame. Combust Flame 99:157–173

    Article  Google Scholar 

  • Chomiak J (1970) A possible propagation mechanism of turbulent flames at high Reynolds numbers. Combust Flame 15:319

    Article  Google Scholar 

  • Chomiak J (1979) Basic considerations in the turbulent flame propagation in premixed gases. Prog Energy Combust Sci 5:207

    Article  Google Scholar 

  • Cécora R-D, Eisfeld B, Probst A, Crippa S, Radespiel R (2012) Differential Reynolds stress modeling for aeronautics. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons forum and aerospace exposition, p 465

    Google Scholar 

  • Cockrell CE, Auslender AH, Guy RW, McClinton CR, Welch SS (2002) Technology roadmap for dual-mode scramjet propulsion to support space-access vision vehicle development. AIAA paper, 5188

    Google Scholar 

  • Conaire MÓ, Curran HJ, Simmie JM, Pitz WJ, Westbrook CK (2004) A comprehensive modeling study of hydrogen oxidation. Int J Chem Kinet 36(11):603–622

    Article  Google Scholar 

  • Curran ET, Murphy SN (eds) (2001) Scramjet propulsion. In: Series progress in astronautics and aeronautics, vol 189, p 1324. AIAA

    Google Scholar 

  • Davidenko D, Gökalp I, Dufour E, Magre P (2003) Numerical simulation of hydrogen supersonic combustion and validation of computational approach 12th AIAA international space planes and hypersonic systems and technologies, p 7033

    Google Scholar 

  • Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    Article  MATH  Google Scholar 

  • Deardorff JW (1973) The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J Fluids Eng 9:429–438

    Article  Google Scholar 

  • Drew DA (1983) Mathematical modeling of two-phase §ow. Ann Rev Fluid Mech 15:261

    Article  Google Scholar 

  • Dooley S, Won SH, Heyne J, Farouk TI, Ju Y, Dryer FL, Kumar K, Hui X, Sung Ch-J, Wang H, Oehlschlaeger MA, Iyer V, Iyer S, Litzinger TA, Santoro RJ, Malewicki T, Brezinsky K (2012) The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combust Flame 159(4):1444–1466

    Article  Google Scholar 

  • Echekki T, Kerstein A, Sutherland J (2011) The one-dimensional-turbulence model. Turbul Combust Model 249–76

    Google Scholar 

  • Edelman RB, Fortune OF (1969) A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles. AIAA Paper, pp 69–86

    Google Scholar 

  • Ertesvag IS, Magnussen BF (2000) The eddy dissipation turbulence energy cascade model. Combust Sci Tech 159:213

    Article  Google Scholar 

  • Escudier MP (1965) The distribution of the mixing length in turbulent flows near walls. Mechanical Engineering Department

    Google Scholar 

  • Falempin F, Serre L (1999) The French PROMETHEE program-main goals and status in 1999. In: 9th International space planes and hypersonic systems and technologies conference, p 4814

    Google Scholar 

  • Favre AJ (1965) The equations of compressible turbulent gases. Marceille University, Instutute de Mécanique Statistique de la Turbulence

    Google Scholar 

  • Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland

    Google Scholar 

  • Friedrich R (1993) Compressible turbulence. Space Course. TU Munich

    Google Scholar 

  • Fedina E, Fureby C (2010) A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor. J Turb 12(24)

    Google Scholar 

  • Frolov SM, Zangiev AE, Semenov IV, Vlasenko VV, Voloshchenko OV, Nikolaev AA, Shiryaeva AA (2015) Simulation of flow in a high-speed combustor in two- and three-dimensional formulation. Combust Explos 8(1):126–135 (In Russian)

    Google Scholar 

  • Frisch U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge. Cambridge University Press, New York

    Google Scholar 

  • Fulton JA, Edwards JR, Hassan HA, Rockwell R, Goyne C, McDaniel J, Kouchi T (2012) Large-eddy/Reynolds-averaged Navier-Stokes simulations of a dual-mode scramjet combustor. AIAA paper 2012–115

    Google Scholar 

  • Fureby C (2007) On LES and DES of wall bounded flows. Ercoftac Bulletin 72 (March)

    Google Scholar 

  • Fureby C (2008) LES Modeling of combustion for propulsion applications. Phil Trans R Soc A 367:2957

    Article  MATH  Google Scholar 

  • Fureby C (2012) LES for supersonic combustion. AIAA paper, pp 2012–5979

    Google Scholar 

  • Fureby C, Grinstein FF (1999) Monotonically integrated large eddy simulation. AIAA Journal 37(5):544–556

    Article  MATH  Google Scholar 

  • Fureby C, Chapuis M, Fedina E, Karl S (2011) CFD analysis of the HyShot II scramjet combustor. Proc Combus Inst 33(2):2399–2405

    Google Scholar 

  • Fureby C, Nordin-Bates K, Petterson K, Bresson A, Sabelnikov V (2015) A computational study of supersonic combustion in strut injector and hypermixer flow fields. Proc Combus Inst 35:2127–2135

    Google Scholar 

  • Gao F, O’Brien EE (1993) A large-eddy simulation scheme for turbulent reacting flows. Phys Fluids A 5:1282–1284

    Article  MATH  Google Scholar 

  • Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Germano M (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7)

    Google Scholar 

  • Ghosal S (1996) An analysis of numerical errors in large-eddy simulations of turbulence. J Comput Phys 125:187–206

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosal S, Moin P (1995) The basic equations for the large eddy simulation of turbulent flows in complex geometry. J Comput Phys 118(1):4–37

    Article  MathSciNet  MATH  Google Scholar 

  • Givi P Filtered density function for subgrid scale modeling of turbulent combustion. AIAA Journal 44:16

    Google Scholar 

  • Glushko VP (ed) (1978–2004) Thermodynamic properties of individual substances, vol 6. Moscow, Nauka (In Russian)

    Google Scholar 

  • Giacomazzi E, Bruno C, Favini B (1999) Fractal modeling of turbulent mixing. Combust Theory Model 3(4):637–655

    Article  MATH  Google Scholar 

  • Giacomazzi E, Bruno C, Favini B (2000) Fractal modeling of turbulent combustion. Combust Theory Model 4:391–412

    Article  MATH  Google Scholar 

  • Goebel S, Dutton J (1990) Velocity measurements of compressible turbulent mixing layers. In: 28th aerospace sciences meeting, p 709

    Google Scholar 

  • Gokulakrishnan P, Pal S, Klassen M, Hamer A, Roby R, Kozaka O, Menon S (2006) Supersonic combustion simulation of cavity-stabilized hydrocarbon flames using ethylene reduced kinetic mechanism. In: Proceedings of the AIAA/ASME/SAE 42nd joint propulsion conference, pp 9–12. Sacramento, CA

    Google Scholar 

  • Goldberg UC, Palaniswamy S, Batten P, Gupta V (2011) Variable turbulent Schmidt and Prandtl number modeling. Eng Appl Comput Fluid Mech 4(4):511–520

    Google Scholar 

  • Gomez CA, Girimaji SS (2013) Toward second-moment closure modelling of compressible shear flows. J Fluid Mech 733:325–369

    Google Scholar 

  • Gonzalez-Juez ED, Kerstein AR, Ranjan R, Menon S (2017) Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog Energy Combust Sci 60:26–67

    Article  Google Scholar 

  • Gran IR, Magnussen BF (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust Sci Tech 119:191–217

    Google Scholar 

  • Grinstein FF, Fureby C (2007) On flux-limiting-based implicit large eddy simulation. J Fluids Eng 129(12):1483–1492

    Article  Google Scholar 

  • Grinstein F, Margolin L, Rider W (eds) (2007) Implicit large eddy simulation. Cambridge University Press, New York, NY

    Google Scholar 

  • Hawkes ER, Cant RS (2000) A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc Combust Inst 28:51

    Article  Google Scholar 

  • Heiser WH, Pratt DT (1994) Hypersonic airbreathing propulsion. AIAA education series. AIAA, Washington, DC

    Book  Google Scholar 

  • Ievlev VM (1990) Numerical simulation of turbulent flows. Moscow, Nauka. (In Russian)

    Google Scholar 

  • Ingenito A, Bruno C (2009) Supersonic mixing and combustion: advance in LES modeling. Progress Propul Phys 1:515–530

    Article  Google Scholar 

  • Jachimowski CJ (1988) Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion (No. N-88-15846; NASA-TP-2791; L-16372; NAS-1.60: 2791). National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center

    Google Scholar 

  • Jaberi A, Colucci PJ, James S, Givi P, Pope SB (1999) Filtered mass density function for large eddy simulation of turbulent reacting flows. J Fluid Mech 401:85

    Article  MATH  Google Scholar 

  • Jarrett O, Cutler A, Antcliff R, Chitsomboon T, Dancey C, Wang J (1988) Measurements of temperature, density, and velocity in supersonic reacting flow for CFD code validation. In: 25th JANNAF combustion meeting, vol 1, pp 357–374

    Google Scholar 

  • Johansson A (2002) Engineering turbulence models and their development, with emphasis on explicit algebraic Reynolds stress models theories of turbulence, p 253–300. Springer, Vienna

    Google Scholar 

  • Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Trans 15(2):301–314

    Google Scholar 

  • Karl S, Hannemann K, Mack A, Steelant J (2008) CFD analysis of the HyShot II scramjet experiments in the HEG shock tunnel. In: 15th AIAA international space planes and hypersonic systems and technologies conference. AIAA paper, pp 2008–2548

    Google Scholar 

  • Kee RJ, Rupley FM, Meeks E, Miller JA (1996) CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sandia national laboratories report SAND96-8216, p 162

    Google Scholar 

  • Kerstein AR (2009) One-dimensional turbulence: stochastic simulation of multi-scale dynamics. Lect Notes Phys 756:291–333

    Google Scholar 

  • Knikker R, Veynante D (2000) Experimental study of the filtered progress variable approach for LES of premixed combustion. In: Friedrich R, Rodi W (eds) Advances in LES of complex flows

    Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad Sci USSR 30:301–305

    Google Scholar 

  • Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid, Izvestiya AN SSSR.Ser. fiz 6(1–2):5.6–5.8

    Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo YS, Corrsin S (1971) Experiments on internal intermittency and the structures distribution functions in fully turbulent fluid. J Fluid Mech 50:285

    Article  Google Scholar 

  • Kuo KK (2005) Principles of combustion. Wiley, New York

    Google Scholar 

  • Kuznetsov VR, Sabelnikov VA (1990) Turbulence and combustion. Revised and augmented edition. Hemisphere publishing corporation. New York, Washington. Philadelphia, London

    Google Scholar 

  • Langener T, Steelant J, Karl S, Hannemann K (2013) Design verification of a small scale scramjet combustion chamber. ISABE 2013. Korea, Busan, p 1655

    Google Scholar 

  • Laurendeau NM (2005) Statistical thermodynamics: fundamentals and applications. Cambridge University Press

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. Footnote on p 126. London, Pergamon

    Google Scholar 

  • Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal 47(12):2894–2906

    Article  Google Scholar 

  • Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Trans 1(2):131–137

    Google Scholar 

  • Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68(3):537–566

    Google Scholar 

  • Laurence SJ, Karl S, Martinez Schramm J, Hannemann K (2013) Transient fluid combustion phenomena in a model scramjet. J Fluid Mech 722:85–120

    Google Scholar 

  • Lele SK (1994) Compressibility effects on turbulence. Ann Rev Fluid Mech 26(1):211–254

    Google Scholar 

  • Li J, Zhao Z, Kazakov A, Dryer FL (2004) An updated comprehensive kinetic model of hydrogen combustion. Int J Chem Kinet 36(10):566–575

    Article  Google Scholar 

  • Libby PA, Williams FA (eds) (1980) Turbulent reacting flows. In: Topics in applied physics, vol 44. Springer

    Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM scientific computing symposium on environmental sciences, p 195–210. York-town Heights, USA

    Google Scholar 

  • Lodato G, Castonguay P, Jameson A (2013) Discrete filter operators for large-eddy simulation using high-order spectral difference methods. Int J Numer Methods Fluids 72(2):231–258

    Google Scholar 

  • Lu MH, Liou WW (2010) Application of a two-layer model for implicit large-eddy simulations using a high-order compact scheme. AIAA paper 2010–1101

    Google Scholar 

  • Lysenko D (2014) On numerical simulation of turbulent flows and combustion. PhD thesis, NTNU

    Google Scholar 

  • Ma T, Stein O, Chakraborty N, Kempf AM (2013) A-posteriori testing of algebraic flame surface density models for LES. Combus Theory Model 17(3):431–482

    Google Scholar 

  • Magnussen BF (1981) On the structure of turbulence and a generalised eddy dissipation concept for chemical reactions in turbulent flow. In: 19th AIAA Sc. Meeting. St. Louis, USA

    Google Scholar 

  • Magnussen BF (2005) The eddy dissipation concept. In: ECCOMAS thematic conference on computational combustion. Lisbon, Portugal

    Google Scholar 

  • Matsuo K, Miyazato Y, Kim HD (1999) Shock train and pseudo-shock phenomena in internal gas flows. Prog Aerosp Sci 35(1):33–100

    Article  Google Scholar 

  • McAllister S, Chen JY, Fernandez-Pello AC (2011) Thermodynamics of combustion. In: Fundamentals of combustion processes, pp 15–47. Springer New York

    Google Scholar 

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Ann Rev Fluid Mech 32:1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Menter FR, Kuntz M (2003) A zonal SST-DES formulation DES Workshop, St Petersburg

    Google Scholar 

  • Menter FR, Garbaruk AV, Egorov Y (2012) Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows. In: Progress in flight physics. EDP sciences, vol 3, pp 89–104

    Google Scholar 

  • Meyers J, Geurts BJ, Sagaut P (2008) Quality and reliability of large eddy simulations. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Moretti G (1965) A new technique for the numerical analysis of nonequilibrium flows. AIAA Journal 3(2):223–229

    Article  MathSciNet  MATH  Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8):269–289

    Google Scholar 

  • Molchanov AM (2011) Numerical simulation of supersonic chemically reacting turbulent jets. In: 20th AIAA computational fluid dynamics conference,pp 27–30 June 2011. Honolulu, Hawaii, AIAA Paper 2011–3211

    Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol 2. MIT Press, Cambridge, MA, USA

    Google Scholar 

  • Moule Y, Sabelnikov V, Mura A, Smart M (2014a) Computational fluid dynamics investigation of a Mach 12 scramjet engine. J Propul Power 30(2)

    Google Scholar 

  • Moule Y, Sabelnikov V, Mura A (2014b) Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets. Combust Flame 161:2647–2668

    Article  Google Scholar 

  • Nasr NB, Gerolymos GA, Vallet I (2009) The Riemann problem for reynolds-stress-transport in RANS and VLES. Comput Fluid Dyn 2008:723–729

    Google Scholar 

  • Naud B (2003) PDF modeling of turbulent sprays and flames using a particle stochastic approach. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  • Nordin-Bates K, Fureby C, Karl S, Hannemann K (2016) Understanding scramjet combustion using LES of the HyShot II combustor. Proc Combus Inst 000:1–8

    Google Scholar 

  • Obukhov AM (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13:77

    Article  MathSciNet  MATH  Google Scholar 

  • Oran ES, Boris JP (2005) Numerical simulation of reactive flow. Cambridge University Press

    Google Scholar 

  • Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5(2):136–139

    Google Scholar 

  • Papamoschou D, Roshko A (1987) The compressible turbulent shear layer: an experimental study. J Fluid Mech 181:441–466

    Google Scholar 

  • Petrova N, Sabelnikov V, Bertier N (2017) Numerical simulation of a backward-facing step combustor using RANS/extended partially stirred reactor model of turbulent combustion. In: Proceedings of EUCASS 2015, progress in propulsion physics, vol 11

    Google Scholar 

  • Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech 34:349–374

    Article  MathSciNet  MATH  Google Scholar 

  • Pitsch H (2006) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482

    Article  MathSciNet  MATH  Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. Edwards

    Google Scholar 

  • Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theor Model 1(1):41–63

    Article  MathSciNet  MATH  Google Scholar 

  • Powell OA et al (2001) Development of hydrocarbon-fueled scramjet engines: the hypersonic technology (HyTech) program. J Propul Power 17(6):1170–1176

    Article  Google Scholar 

  • Prandtl L (1942) Bemerkungen zur Theorie der freien Turbulenz. ZAMM J Appl Math Mech 22(5):241, 243

    Google Scholar 

  • Prandtl L, Wieghardt K (1947) Über ein neues Formelsystem für die ausgebildete Turbulenz. Vandenhoeck and Ruprecht

    Google Scholar 

  • Prudnikov AG, Koroleva NS, Boev DA (2008) Faster than all winds. In: Memory of Yevgeny Sergeyevich Schetinkov. Engine No. 3 (57). http://engine.aviaport.ru/issues/57/ (In Russian)

  • Qin Z, Lissianski V, Yang H, Gardiner WC Jr, Davis SG, Wang H (2000) Combustion chemistry of propane: a case study of detailed reaction mechanism optimization. Proc Combust Inst 28(2):663–1669

    Google Scholar 

  • Rathakrishnan E (2013) Theoretical aerodynamics. Wiley

    Google Scholar 

  • Reynolds O (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc R Soc Lond 56(336–339):40–45

    Article  Google Scholar 

  • Rodi W, Constantinescu G, Stoesser T (2013) Large-eddy simulation in hydraulics. CRC Press, Hoboken

    Google Scholar 

  • Rodi W (1976) A new algebraic relation for calculating Reynolds stresses. ZAMM, vol 56, p 219

    Google Scholar 

  • Sabelnikov VA, Penzin VI (2000) Scramjet research and development in Russia. In: Curran ET, Murthy SNB (eds) Scramjet propulsion, Progress in astronautics and aeronautics, AIAA, vol 189, pp 223–368

    Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows, an introduction, 3rd edn. Springer, Heidelberg

    MATH  Google Scholar 

  • Sabelnikov V, Figueira da Silva LF (2002) Partially stirred reactor: study of the sensitivity of the Monte-Carlo simulation to the number of stochastic particles with the use of a semi-analytic, steady-state, solution to the PDF equation. Combust Flame 129:164–178

    Article  Google Scholar 

  • Sabelnikov V, Fureby C (2013a) LES Combustion modeling for high Re flames using a multi-phase analogy. Combust Flame 160(1):83–96

    Article  Google Scholar 

  • Sabelnikov V, Fureby C (2013b) Extended LES-PaSR model for simulation of turbulent combustion. Progress Propuls Phys 4:539–568. https://doi.org/10.1051/eucass/201304539

    Article  Google Scholar 

  • Sankaran V, Menon S (2005) Subgrid combustion modeling of 3D premixed flames in the thin-reaction-zone regime. Proc Combust Inst 38:575

    Google Scholar 

  • Sarkar S (1992) The pressure-dilatation correlation in compressible flows. Phys Fluids A 4:2674, 2682

    Google Scholar 

  • Sarkar S (1993) Turbulence modeling and simulation of high-speed flows. In: 2nd space course on low earth orbit transportation, vol 1. Munich University of Technology, October 11–22

    Google Scholar 

  • Scherrer D, Dessornes O, Ferrier M, Vincent-Randonnier A, Moule Y, Sabelnikov V (2016) Research on supersonic combustion and scramjet combustors at ONERA, p 04. Aerospace Lab

    Google Scholar 

  • Schetinkov ES (1957) Method of operation of the ramjet air-breathing engine. USSR Patent No. 471815

    Google Scholar 

  • Schetinkov ES (1958) Calculation of flame velocity in turbulent stream. Symp (Int) Combust 7:583–589

    Article  Google Scholar 

  • Schetinkov ES (1965) Physics of gas combustion, Nauka, Moscow, in Russian (exists machinery translation en English: FTD-HT-23-496-48)

    Google Scholar 

  • Sedov LI (1993) Similarity and dimensional methods in mechanics. CRC press

    Google Scholar 

  • Segal C (2009) The scramjet engine: processes and characteristics. Cambridge University Press

    Google Scholar 

  • Shapiro AH (1953) The dynamics and thermodynamics of compressible fluid flow, vol 1. Ronald Press, New York

    Google Scholar 

  • Shiryaeva AA (2010) On the stationary state of a mixture of reacting gases. Russ J Phys Chem B 4(3):413–422

    Article  MathSciNet  Google Scholar 

  • Shiryaeva A, Anisimov K (2015) Development and application of numerical technology for simulation of different combustion types in high-speed viscous gas turbulent flows. In: 6th European conference for aeronautics and space sciences (EUCASS 2015), Kraków (Poland), 29 June–3 July 2015, 14 pages. Full text is available for participants at http://www.eucass2015.eu/detailed-programme/

  • Shiryaeva A, Vlasenko V, Anisimov K (2014) Development and application of numerical technology for simulation of different combustion types in high-speed viscous gas turbulent flows. In: 44th AIAA fluid dynamics conference. AIAA-2014-2097

    Google Scholar 

  • Shur M, Strelets M, Zaikov L, Gulyaev A, KozIov V, Secundov A (1995) Comparative numerical testing of one-and two-equation turbulence models for flows with separation and reattachement. In: 33rd aerospace sciences meeting and exhibit, aerospace sciences meetings

    Google Scholar 

  • Singh S, You D (2013) A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows. Int J Heat Fluid Flow 42:94–104

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review 91(3):99–164

    Article  Google Scholar 

  • Smith AMO, Cebeci T (1967) Numerical solution of the turbulent-boundary-layer equations. Douglas Aircraft Co. Inc. Long Beach Calif. Aircraft Div., No DAC-33735

    Google Scholar 

  • Smits AJ, Dussauge JP (2006) Turbulent shear layers in supersonic flow. Springer Science and Business Media, p 417

    Google Scholar 

  • Spalart PR (2009) Detached eddy simulation. Ann Rev Fluid Mech 41:181–202

    Article  MATH  Google Scholar 

  • Spalart PRA, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows 30th aerospace sciences meeting and exhibit, p 439

    Google Scholar 

  • Spalart PR, Jou W-H, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu C, Liu Z (eds) Advances in DNS/LES, pp 137–47. Greyden Press, Columbus

    Google Scholar 

  • Speziale CG (1987) On nonlinear k-l and k-ε models of turbulence. J Fluid Mech 178:459–475

    Article  MATH  Google Scholar 

  • Speziale CG, Sarkar S, Gatski TB (1991) Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J Fluid Mech 227:245–272

    Google Scholar 

  • Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence. Ann Rev Fluid Mech 29:435

    Article  MathSciNet  Google Scholar 

  • Sreenivasan KR, Meneveau C (1986) The fractal facets of turbulence. J Fluid Mech 173:356

    Article  MathSciNet  Google Scholar 

  • Tanahashi M, Fujimura M, Miyauchi T (2000) Coherent fine scale eddies in turbulent premixed flames. Proc Combust Inst 28:5729

    Article  Google Scholar 

  • Tanahashi M, Sato M, Shimura M, Miyauchi T (2008) DNS and combined laser diagnostics of turbulent combustion. J Therm Sci Technol 3:391

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course of turbulence. MIT Press

    Google Scholar 

  • Thibaut D, Candel S (1998) Numerical study of unsteady turbulent premixed combustion: application to flashback simulation. Combus Flame 113(1):53–65

    Google Scholar 

  • Tsinober A (2009) An informal conceptual introduction to turbulence. Springer, Dordrecht, Heidelberg, New York, London

    Book  MATH  Google Scholar 

  • Tsinober A (2013) The essence of turbulence as a physical phenomenon. with emphasis on issues of paradigmatic nature. Springer, Dordrecht, Heidelberg, New York, London

    MATH  Google Scholar 

  • Townend LH (2001) Domain of the scramjet. J Propul Power 17(6):1205–1213

    Article  Google Scholar 

  • Troshin AI (2017) Turbulence model taking into account the longitudinal flow inhomogeneity in mixing layers and jets. In: Progress in flight physics, EDP sciences, vol 9, pp 481–496

    Google Scholar 

  • Vanhove G, Petit G, Minetti R (2006) Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel. Combust Flame 145(3):521–532

    Article  Google Scholar 

  • Vasilyev OV, Lund TS (1997) A general theory of discrete filtering for LES in complex geometry. Ann Res Briefs 67–82

    Google Scholar 

  • Vlasenko VV, Nozdrachev AY (2017) About necessity to use thermodynamic potentials in calculations with finite-rate chemical kinetics. Combust Explos 10(2):19–24. (In Russian)

    Google Scholar 

  • Vieser W, Esch T, Menter F (2002) Heat transfer predictions using advanced two-equation turbulence models. CFX Validation Report 10/0602, AEA Technology, pp 1–69

    Google Scholar 

  • Visbal MR, Rizzetta DP (2002) Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes. J Fluids Eng 124(4):836–847

    Article  Google Scholar 

  • Visbal MR, Morgan PE, Rizzetta DP (2003) An implicit LES approach based on high-order compact differencing and filtering schemes. AIAA paper. 2003. T. 4098. C

    Google Scholar 

  • Vulis LA (1961) Thermal rezhime of combustion, Chap. 3. McGraw-Hill, New York, NY. (Translation from the Russian edition: 1954. Teplovoy rezhim goreniya. Moscow Leningrad: Gosenergoizdat. p 288)

    Google Scholar 

  • Waltrup PJ (2001) Upper bounds on the flight speed of hydrocarbon-fueled scramjet-powered vehicles. J Propul Power 17(6):1199–1204

    Article  Google Scholar 

  • Wang P, Bai XS (2005) Large eddy simulation of turbulent premixed flames using level-set G-equation. Proc Combust Inst 30:583

    Google Scholar 

  • Weller HG, Tabor G, Gosman AD, Fureby C (1998) Application of a flame-wrinkling LES combustion model to a turbulent shear layer formed at a rearward facing step. Proc Combust Inst 27:899

    Article  Google Scholar 

  • Westbrook CK, Dryer FL (1981) Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames combustion science and technology, 27(1–2):31–43

    Google Scholar 

  • Weydahl T, Poyyapakkam M, Seljeskog M, Haugen NEL (2011) Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions. Int J Hydr Energy 36(18):12025–12034

    Article  Google Scholar 

  • Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26(11):1299–1310

    Google Scholar 

  • Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW Industries

    Google Scholar 

  • Wilcox DC (2008) Formulation of the k-ω turbulence model revisited. AIAA Journal 46(11):2823–2838

    Article  Google Scholar 

  • Woodward PR, Porter DH, Sytine I, Anderson SE, Mirin AA, Curtis BC, Cohen RH, Dannevik WP, Dimits AM, Eliason DE, Winkler K-H, Hodson SW (2001) Very high resolution simulations of compressible turbulent flows. In: Ramos E, Cisneros G, Fernandez-Flores A, Santillan-Gonzalez A (eds) Computational fluid dynamics. 4th UNAM supercomputing conference proceedings, vol 3. World Scientific

    Google Scholar 

  • Xiao X, Hassan HA, Baurle RA (2007) Modeling scramjet flows with variable turbulent Prandtl and Schmidt numbers. AIAA Journal 45(6):1415

    Article  Google Scholar 

  • Zambon AC, Chelliah HK (2007) Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems. Combust Flame 150(1):71–91

    Article  Google Scholar 

  • Zel’dovich YB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) The mathematical theory of combustion and explosions, Chap. 1, paragraph 3. New York, Plenum

    Google Scholar 

  • Zeman O (1990) Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys Fluids A 2(2):178–188

    Google Scholar 

  • HEXAFLY-INT project site. http://www.esa.int/techresources/hexafly_int

Download references

Acknowledgements

The first author (VAS) was financially supported by ONERA and by the Grant of the Ministry of Education and Science of the Russian Federation (Contract No. 14.G39.31.0001 of 13.02.2017). The second author (VVV) was supported by the Grant of the Ministry of Education and Science of the Russian Federation (Contract No. 14.G39.31.0001 of 13.02.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Sabelnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabelnikov, V.A., Vlasenko, V.V. (2018). Combustion in Supersonic Flows and Scramjet Combustion Simulation. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics