Skip to main content

Transported Probability Density Function Method for MILD Combustion

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Combustion

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 2519 Accesses

Abstract

Modeling of Moderate and Intense Low oxygen Dilution (MILD) combustion is a challenging task due to slow reaction rates. The present chapter aims at assessing the predictive capability of transport PDF-based combustion models for two burners (Delft-Jet-in-Hot-Coflow (DJHC) burner and Adelaide JHC burner), which mimics MILD combustion characteristics. In the present work, both the transported PDF approaches, i.e., Lagrangian PDF (LPDF) and multi-environment Eulerian PDF (MEPDF), are considered and assessed. For DJHC burner, both 2D and 3D calculations are reported for varying parameters. However, for Adelaide burner, only 2D computations are reported. In the context of LPDF calculations, different micro-mixing models are considered to investigate the effect of molecular diffusion. In the case of DJHC burner, all the models behave properly and predictions are observed to be in good agreement. However, the model discrepancies are noticed while comparing the species profiles, especially in the case of Adelaide burner. Also, the performance of the models is properly assessed by analyzing the profiles of minor species and RMS of scalar fields. Overall, the performances are improved with increasing O2 content, i.e., higher Damkohler number range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ρ:

Mixture density

T:

Temperature

Z :

Mixture fraction

t :

Time

P:

Favre joint PDF of composition

u i :

Favre mean fluid velocity

S k :

Reaction of species k

ψ :

Composition space vector

\( u_{i}^{{\prime \prime }} \) :

Fluid velocity fluctuation vector

J ik :

Molecular diffusion flux vector

\( \theta_{m,mix} \) :

Micro-mixing

\( m^{i} \) :

Mass of the particle

N p :

Total number of particle in a cell

MILD:

Moderate and Intense Low Oxygen Dilution

JHC:

Jet-in-Hot Coflow

DJHC:

Delft Jet-in-Hot Coflow

PDF:

Probability Density Function

LPDF:

Lagrangian PDF

MEPDF:

Multi-environment Eulerian PDF

DQMOM:

Direct Quadrature Method of Moments

IEM:

Interaction-by-Exchange-with-the-Mean

CD:

Coalescence Dispersion

EMST:

Euclidean Minimum Spanning Tree

LES:

Large Eddy Simulation

SIMPLE:

Semi-Implicit Method for Pressure-Linked Equations

RANS:

Reynolds-Averaged-Navier–Stokes

References

  • ANSYS fluent 13.0 user’s guide (2010) Canonsburg, PA, USA

    Google Scholar 

  • Akroyd J, Smith AJ, McGlashan LR, Kraft M (2010a) Numerical investigation of DQMOM-IEM model as a turbulent reaction closure. Chem Eng Sci 65(6):1915–1924

    Article  Google Scholar 

  • Akroyd J, Smith AJ, McGlashan LR, Kraft M (2010b) Comparison of the stochastic fields method and DQMoM-IEM as turbulent reaction closures. Chem Eng Sci 65(20):5429–5441

    Article  Google Scholar 

  • Aminian J, Galletti C, Shahhosseini S, Tognotti L (2012) Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics, and turbulence-chemistry interaction. Flow Turbul Combust 88:597–623

    Article  MATH  Google Scholar 

  • Bhaya R, De A, Yadav R (2014) Large Eddy simulation of MILD combustion using PDF based turbulence-chemistry interaction models. Combust Sci Technol 186:1138–1165

    Article  Google Scholar 

  • Bilger RW, Starner SH, Kee RJ (1990) On reduced mechanisms for methane-air combustion in non-premixed flames. Combust Flame 80:135–149

    Article  Google Scholar 

  • Bowman CT, Hanson RK, Davidson DF, Gardiner Jr WC, Lissianski V, Smith GP, Golde DM, Frenklach M, Goldenberg M (1996) GRI Mech. http://www.me.berkeley.edu/gri_mech/

  • Christo FC, Dally BB (2004) Application of transport PDF approach for modeling MILD combustion. In: 15th Australian Fluid Mechanics Conference, Sydney, Australia

    Google Scholar 

  • Christo FC, Dally BB (2005) Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust Flame 142(1–2):117–129

    Article  Google Scholar 

  • Curl RL (1963) Dispersed phase mixing: 1. Theory and effects in simple reactors. AIChE J 9:175–181

    Article  Google Scholar 

  • Dally BB, Karpetis AN, Barlow RS (2002) Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc Combust Inst 29:1147–1154

    Article  Google Scholar 

  • De A, Dongre A (2015) Assessment of turbulence-chemistry interaction models in MILD combustion regime. Flow Turbul Combust 94:439–478

    Article  Google Scholar 

  • De A, Oldenhof E, Sathiah P, Roekaerts D (2011) Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flames using Eddy Dissipation Concept (EDC) model for turbulence-chemistry interaction. Flow Turbul Combust 87(4):537–567

    Article  MATH  Google Scholar 

  • De A, Dongre A, Yadav R (2012) Numerical investigation of Delft-Jet-in-Hot-Coflow (DJHC) burner using Probability Density Function (PDF) transport modeling. In: ASME Turbo Expo, San Antonio, Texas, ASME paper GT2013-95390

    Google Scholar 

  • Dongre A, De A, Yadav R (2014) Numerical investigation of MILD combustion using multi-environment Eulerian probability density function modeling. Int J Spray Combust Dyn 6(4):357–386

    Article  Google Scholar 

  • Dopazo C, O’Brien EE (1974) Functional formulation of non-isothermal turbulent reactive flows. Phys Fluids 17:1968–1975

    Article  MATH  Google Scholar 

  • Fan R, Marchisio DL, Fox RO (2004) Application of the direct quadrature method of moments to poly-disperse gas-solid fluidized bed. Powder Technol 139(1):7–20

    Article  Google Scholar 

  • Fox RO (2003) Computational models for turbulent reacting flows. Cambridge University Press

    Google Scholar 

  • Frassoldati AF, Sharma P, Cuoci A, Faravelli T, Rangi E (2010) Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl Thermal Eng 30:376–383

    Article  Google Scholar 

  • Haworth DC (2010) Progress in probability density function methods for turbulent reacting flows. Prog Energy Combust Sci 36:168–259

    Article  Google Scholar 

  • Ihme M, See YC (2011) LES flamelet modeling of three-stream MILD combustor: analysis of flame sensitivity to scalar inflow conditions. Proc Combust Inst 33:1309–1317

    Article  Google Scholar 

  • Ihme M, Zhang J, He G, Dally B (2012) LES of a Jet-in-Hot-Coflow burner operating in the oxygen-diluted combustion regime. Flow Turbul Combust 89:449–464

    Article  Google Scholar 

  • Jaishree J, Haworth DC (2012) Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combust Theory Model 16(3):435–463

    Article  MATH  Google Scholar 

  • James S, Anand MS, Razdan MK, Pope SB (1999) In situ detailed chemistry calculations in combustor flow analysis. ASME J Eng Gas Turbines Power 123:747–756

    Article  Google Scholar 

  • Kazakov A, Frenklach M (1994) Reduced reaction sets based on GRI-MECH 1.2. http://www.me.berkeley.edu/drm/

  • Kim SH, Huh KY, Dally BB (2005) Conditional moment closure modeling of turbulent non-premixed combustion in diluted hot coflow. Proc Combust Inst 30:751–757

    Article  Google Scholar 

  • Kulkarni RM, Polifke W (2012) LES of Delft-Jet-in-Hot-Coflow (DJHC) with tabulated chemistry and stochastic fields combustion model. Fuel Proc Technol 107:138–146

    Article  Google Scholar 

  • Liu Y, Fox RO (2005) CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE J 52(2):731–744

    Article  Google Scholar 

  • Marchisio DL, Fox RO (2005) Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci 36(1):43–73

    Article  Google Scholar 

  • Mardani A, Tabejamaat S, Ghamari M (2010) Numerical study of influence of molecular diffusion in the Mild combustion regime. Combust Theory Model 14(5):747–774

    Article  MATH  Google Scholar 

  • Mardani A, Tabejamaat S, Ghamari M (2011) Numerical study of effect of turbulence on rate of reactions in the MILD combustion regime. Combust Theory Model 15(6):753–772

    Article  MATH  Google Scholar 

  • Oldenhof E, Tummers M, Van Veen EH, Roekaerts DJEM (2010a) Ignition kernel formation and lift-off behavior of jet-in-hot-coflow flames. Combust Flame 157:1167–1178

    Article  Google Scholar 

  • Oldenhof E, Tummers MJ, Van Veen EH, Roekaerts DJEM (2010b) Role of entrainment in the stabilization of jet-in-hot-coflow flames. Combust Flame 157(6):1167–1178

    Article  Google Scholar 

  • Oldenhof E, Tummers MJ, Van Veen EH, Roekaerts DJEM (2012) Transient response of the Delft jet-in-hot coflow flames. Combust Flame 159(2):697–706

    Article  Google Scholar 

  • Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192

    Article  Google Scholar 

  • Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theory Model 1:41–63

    Article  MathSciNet  MATH  Google Scholar 

  • Raman V, Pitsch H, Fox RO (2006) Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combust Theory Model 10(3):439–458

    Article  MathSciNet  MATH  Google Scholar 

  • Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Gardiner Jr WC, Lissianski VV, Qin Z (2010) GRI Mech. http://www.me.berkeley.edu/gri_mech/

  • Smooke MD (1991) Reduced kinetics mechanisms and asymptotic approximation for methane-air flames. Springer

    Google Scholar 

  • Subramaniam S, Pope SB (1998) A mixing model for turbulent reacting flows based on Euclidean minimum spanning trees. Combust Flame 115:487–514

    Article  Google Scholar 

  • Tang A, Zhao W, Bockelie M, Fox RO (2007) Multi-environment probability density function (MEPDF) method for modeling turbulent combustion using realistic chemical kinetics. Combust Theory Model 11(6):889–907

    Article  MATH  Google Scholar 

  • Wang L, Fox RO (2004) Comparison of micro-mixing models for CFD simulation of nano-particle formation. AIChE J 50(9):2217–2232

    Article  Google Scholar 

  • Yadav R, Kushari A, Eswaran E, Verma AK (2013) A numerical investigation of the Eulerian PDF transport approach for modeling of turbulent non-premixed pilot stabilized flames. Combust Flame 160(3):618–634

    Article  Google Scholar 

  • Yadav R, Kushari A, De A (2014) Modeling of turbulent lifted flames in vitiated co-flow using multi-environment Eulerian PDF transport approach. Int J Heat Mass Transf 77:230–246

    Article  Google Scholar 

  • Zucca A, Marchisio DL, Barresi AA, Fox RO (2006) Implementation of the population balance equation in CFD codes for modeling soot formation in turbulent flames. Chem Eng Sci 61(1):87–95

    Article  Google Scholar 

Download references

Acknowledgements

Author appreciates the computational facilities available at IITK (http://www.iitk.ac.in/cc) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashoke De (2018). Transported Probability Density Function Method for MILD Combustion. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics