Skip to main content

Modelling of Soot Formation in a Kerosene Spray Flame

  • Chapter
  • First Online:
  • 2539 Accesses

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Modelling the formation of soot in a kerosene spray flame is an important consideration in the design and development of gas turbine combustors. The aviation gas turbine engines run on kerosene-type jet fuels. Formation and emission of soot not only pollutes the environment but also augments the radiative heat flux from the flame, which may result in overheated liners and atomizers. Many complex processes are involved in the spray combustion in gas turbine combustors, which include turbulent transport of gas, formation of the fuel spray, droplet motion and evaporation, chemical reaction and thermal radiation in addition to pollutant formation. Each of these requires adequate modelling efforts for the right prediction of the overall process. In this chapter, a modelling technique for the prediction of spray flame and soot formation has been discussed in connection with the kerosene fuel. Considering the computational economy, we have restricted the discussion on RANS-based modelling, which is still popular in the industrial scale for the prediction of combustion phenomenon. Stochastic separated flow model is considered for the two-phase transport of the droplets formed in the atomized spray. The combustion of fuel follows the non-premixed flame mode, which has been modelled using the laminar flamelet model. The soot model is a semi-empirical one for which the model constants have been optimized for kerosene fuel. It is found that the optimized constants work well for kerosene in predicting the soot, which finally leads to good predictions of the liner wall temperature and exit gas temperature from the combustor. Different cases have been run with different air flow split into the combustor to analyse the effects using the developed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( a_{k} \) :

Weighting factor

\( C_{Drag} \) :

Drag coefficient

\( c_{p} \) :

Specific heat, J/kg-K

\( D \) :

Diameter of the combustor, m

D :

Diffusivity

\( d \) :

Diameter, m

\( d_{o} \) :

Mean droplet diameter, m

\( d_{{p_{soot} }} \) :

Mean diameter of soot particle, m

\( \Delta H_{v} \) :

Latent heat of vapourization, J/kg

\( h \) , H :

Enthalpy

\( h_{c} \) :

Heat transfer coefficient, W/m2-K

\( h_{D} \) :

Mass transfer coefficient, m/s

\( I \) :

Radiation intensity, W/m2.sr

\( k \) :

Turbulent kinetic energy, m2/s2

LS :

Length scale

\( M \) :

Soot mass concentration, kg/m3

\( m \) :

Mass, kg

\( \dot{m} \) :

Mass flow rate, kg/s

\( N \) :

Particle number density, 1/m3

\( N_{A} \) :

Avogadro number

p :

Pressure, N/m2

P :

Probability density function

\( \text{Re} \) :

Reynolds number

S :

Source term

Sc :

Schmidt number

\( T \) :

Temperature, K

TI :

Turbulent intensity

\( u \), U:

Velocity, m/s

\( u^{\prime} \) :

Fluctuating velocity

\( w_{i} \) :

Quadrature weight

\( X \) :

Mole fraction

Y :

Mass fraction

\( z \) :

Path length

\( \varepsilon \) :

Rate of dissipation of turbulent KE

\( \kappa \) :

Absorption coefficient

λ:

Thermal conductivity, W/m K

\( \mu \) :

Dynamic viscosity

\( \mu_{t} \) :

Eddy viscosity

\( \nu \) :

Kinematic viscosity, m2/s

\( \xi \) :

Mixture fraction

\( \xi^{\prime\prime} \) :

Variance of mixture fraction

\( \rho \) :

Density, kg/m3

\( \sigma \) :

Turbulent Prandtl number

\( \phi \) :

Scalar variable

\( \phi^{\prime} \) :

Fluctuation of scalar variable

\( \chi \) :

Scalar dissipation rate, s−1

\( \dot{\omega } \) :

Reaction rate

\( \delta_{ij} \) :

Chroneker delta

\( crit \) :

Critical

\( d \) :

Droplet

\( eff \) :

Effective

\( f \) :

Fuel

\( g \) :

Gas

\( i \) , j, k :

Coordinate direction

in :

Inlet

k :

kth species

\( l \) :

Liquid/fuel

\( rad \) :

Radiation

st :

Stoichiometric

\( \phi \) :

Scalar variable

0:

Reference value

w :

Wall

z:

In z-direction

K :

kth species

References

  • Bray KNC, Peters N (1994) Laminar flamelets in turbulent flames. In: Libby PA, Williams FA (eds) Turbulent reacting flows, chapter 2. Academic Press, London, pp 63–94

    Google Scholar 

  • Brookes SJ, Moss JB (1999) Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame 116:486–503

    Article  Google Scholar 

  • Calcote HF, Manos DM (1983) Effect of molecular structure on incipient soot formation. Combust Flame 49:289–304

    Article  Google Scholar 

  • Carlson BG, Lathrop KD (1993) Transport theory—the method of discrete ordinates. In: Greenspan H, Kelber CN, Okrent D (eds) Computing methods in reactor physics. Gorden and Breach, London, pp 165–266

    Google Scholar 

  • Chandrashekhar S (1950) Radiative transfer. Clarendon, Oxford

    Google Scholar 

  • Chen H, Chen S, Kraichnan RH (1989) Probability distribution of a stochastically advected scalar field. Phys Rev Lett 63(24):2657–2660

    Article  Google Scholar 

  • Datta A, Som SK (1999) Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Appl Therm Eng 19(9):949–967

    Article  Google Scholar 

  • De S, Lakshmisha KN, Bilger RW (2011) Modelling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust Flame 158:1992–2008

    Article  Google Scholar 

  • Dopazo C (1994) Recent developments in pdf methods. In: Libby PA, Williams FA (eds)Turbulent reactive flows, chapter 7. Academic Press, London, pp 375–474

    Google Scholar 

  • Eldrainy Y, Saqr KM, Aly HS, Lazim TM, Jaafar MNM (2011) Large eddy simulation and preliminary modelling of the flow downstream a variable geometry swirler for gas turbine combustors. Int Comm Heat Mass Transf 38(8):1104–1109

    Article  Google Scholar 

  • Evans M, Hastings N, Peacock B (2000) Statistical distributions, 3rd edn. Wiley Series in Probability and Statistics. Wiley, New York

    Google Scholar 

  • Fiveland WA (1982) A discrete-ordinates method for predicting radiative heat transfer in axisymmetric enclosure. ASME 82-HT-20

    Google Scholar 

  • Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  Google Scholar 

  • Ghose P, Patra J, Datta A, Mukhopadhyay A (2016) Prediction of soot and thermal radiation in a model gas turbine combustion burning kerosene fuel spray at different swirl levels. Combust Theor Model 20(3):457–485

    Article  Google Scholar 

  • Glassmann I (1988) Soot formation in combustion processes. In: Twenty-Second symposium (International) on combustion. The Combustion institute, pp 295–311

    Google Scholar 

  • Guo B, Langrish TAG, Fletcher DF (2001) An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet. Appl Math Model 25:635–653

    Article  MATH  Google Scholar 

  • Hall RJ, Smooke MD, Colket MB (1997) Predictions of soot dynamics in opposed jet flames. In: Dryer FL, Sawyer RF (eds) Physical and chemical aspects of combustion: a tribute to Irvine Glassman. Gordon & Breach, pp 189–230

    Google Scholar 

  • Harris SJ, Weiner AM (1983) Surface growth of soot particles in premixed ethylene/air flames. Combust Sci Tech 31:155–167

    Article  Google Scholar 

  • Haynes BS, Wagner HG (1981) Soot formation. Prog Energy Combust Sci 7:229–273

    Article  Google Scholar 

  • Hiroyasu H, Kadota T, Arai M (1983) Development and use of a spray combustion modelling to predict diesel engine efficiency and pollutant emissions. Part 1: combustion modelling. Bull JSME 26(214):569–575

    Article  Google Scholar 

  • Janicka J, Peters N (1982) Prediction of turbulent jet diffusion flame lift-off using a pdf transport equation. In: Nineteenth Symposium (International) on combustion. The Combustion Institute, pp 367–374

    Google Scholar 

  • Joung D, Huh KY (2009) Numerical simulation of non-reacting and reacting flows in a 5 MW commercial gas turbine combustor, ASME turbo expo 2009: power for land, sea, and air, Orlando, FL, 8–12 June

    Google Scholar 

  • Kaplan CR, Patnaik G, Kailasanath K (1998) Universal relationships in sooting methane-air diffusion flames. Combust Sci Technol 13:39–65

    Article  Google Scholar 

  • Karim VM, Bart M, Erik D (2003) Comparative study of k-ε turbulence models in inert and reacting swirling flows. AIAA Paper No. 2003-3744

    Google Scholar 

  • Kennedy IM (1997) Models of soot formation and oxidation. Prog Energy Combust Sci 23:95–132

    Article  Google Scholar 

  • Khan M, Greeves G (1974) A method for calculating the formation and combustion of soot in diesel engines. In: Afgan NH, Beer JM (eds) Heat transfer in flames, chapter 25. Scripta, Washington DC

    Google Scholar 

  • Kundu KP, Penko PF, Yang SL (1998) Simplified Jet-A/Air combustion mechanisms for calculation of NOx emissions, AIAA-98-3986

    Google Scholar 

  • Mandal BK, Datta A, Sarkar A (2009) Transient development of flame and soot distribution in laminar diffusion flame with preheated air. ASME J Eng Gas Turbine Power 131, 031501-1

    Google Scholar 

  • Mansurov ZA (2005) Soot formation in combustion processes. Combust Explo Shock Waves 41(6):727–744

    Article  Google Scholar 

  • Modest MF (1993) Radiative heat transfer, 2nd edn. McGraw-Hill Inc., NY, USA

    Google Scholar 

  • Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two phase flow system. J Fluid Mech 55(2):193–208

    Article  MATH  Google Scholar 

  • Moss JB, Aksit IM (2007) Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc Combust Inst 31:3139–3146

    Article  Google Scholar 

  • Peters N (2004) Turbulent combustion. Cambridge University Press, UK

    MATH  Google Scholar 

  • Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192

    Article  Google Scholar 

  • Pope SB (1991) Combustion modelling using probability density function method, chapter 11. In: Oran ES, Boris JP (eds) Numerical approaches to combustion modelling. AIAA

    Google Scholar 

  • Pope SB (1994) Stochastic Lagrangian models for turbulence. Annu Rev Fluid Mech 26:23–63

    Article  MATH  Google Scholar 

  • Pope SB (2000) Turbulent flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ranz WE, Marshall WR Jr (1952a) Evaporation from drops. Part I. Chem Eng Prog 48(3):141–146

    Google Scholar 

  • Ranz WE, Marshall WR Jr (1952b) Evaporation from drops. Part II. Chem Eng Prog 48(4):173–180

    Google Scholar 

  • Reis LCBS, Carvalho JA Jr, Nascimento MAR, Rodrigues LO, Dias FLG, Sobrinho PM (2014) Numerical modelling of flow through an industrial burner orifice. Appl Therm Eng 67:201–213

    Article  Google Scholar 

  • Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

    Article  Google Scholar 

  • Sazhin SS, Sazhina EM (1996) The effective-emissivity approximation for the thermal radiation transfer problem. Fuel 75(14):1646–1654

    Article  Google Scholar 

  • Siegel R, Howell JR (1992) Thermal radiation heat transfer. Hemisphere Publishing Corporation, Washington DC

    Google Scholar 

  • Sivathanu YR, Gore JP (1997) Effects of gas-band radiation on soot kinetics in laminar methane/air diffusion flames. Combust Flame 110:256–263

    Article  Google Scholar 

  • Smooke MD, McEnally CS, Pfefferle LD, Hall RJ, Colket MB (1999) Computational and experimental study of soot formation in a coflow, laminar diffusion Flame. Combust Flame 117(1–2):117–139

    Article  Google Scholar 

  • Tesner PA, Tsygankova LP, Guilazetdinov LP, Zuyev VP, Loshakova GV (1971) The formation of soot from aromatic hydrocarbons in diffusion flames of hydrocarbon-hydrogen mixtures. Combust Flame 17:279–285

    Article  Google Scholar 

  • Tolpadi AK (1995) Calculation of two phase flow in gas turbine combustor. ASME J Eng Gas Turbine Power 117(4):695–703

    Article  Google Scholar 

  • Van Maele K, Merci B, Dick E (2003) Comparative study of k-ε turbulence models in inert and reacting swirling flows. In: 33rd AIAA Fluid dynamics conference and exhibit, Oriando, FL, 23–26 June

    Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method, Second Edition. Pearson Education, Harlow, England

    Google Scholar 

  • Watanabe H, Kurose R, Komori S, Pitsch H (2006) A numerical simulation of soot formation in spray flames. In: Proceedings of the summer program, center for turbulence research, pp 325–336

    Google Scholar 

  • Watanabe H, Matsushita Y, Aoki H, Miura T (2010) Numerical simulation of emulsified fuel spray combustion with puffing and micro-explosion. Combust Flame 157:839–852

    Article  Google Scholar 

  • Wen Z, Yun S, Thomson MJ, Lightstone MF (2003) Modelling soot formation in turbulent kerosene/air jet diffusion flames. Combust Flame 135:323–340

    Article  Google Scholar 

  • Williams FA (1975) Description of turbulent diffusion flames, 1st edn. Plenum Press

    Google Scholar 

  • Young KJ, Stewart CD, Moss JB (1994) Soot formation in turbulent nonpremixed kerosene-air flames burning at elevated pressure: experimental measurement. In: Symposium (International) on combustion, vol 25, pp 609–617

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support from the Gas Turbine Research Establishment (GTRE), Govt. of India under the GATET scheme (Grant No. GTRE/GATET/CA07/1012/026/11/001) to conduct the research whose results are presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghose, P., Datta, A., Ganguly, R., Mukhopadhyay, A., Sen, S. (2018). Modelling of Soot Formation in a Kerosene Spray Flame. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics