Skip to main content

Soot Predictions in Higher Order Hydrocarbon Flames: Assessment of Semi-Empirical Models and Method of Moments

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Combustion

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Soot predictions in turbulent flames possess different challenge due to the multiscale interaction between turbulence, chemistry, and particle dynamics. In addition, the high intermittency associated with these processes complicates the modeling further. Also, the large number of reactions related to soot precursor (acetylene) and polycyclic aromatic hydrocarbons (PAH) impose additional constraints in the modeling. Moreover, the radiative heat transfer adds to the complexity as there exists a strong coupling (two way) between combustion and soot models. In the present study, soot formation in a highly sooty kerosene/air diffusion flame is numerically investigated using both the semi-empirical and detailed soot models, where the steady laminar flamelet model (SLFM) is invoked as turbulence–chemistry interaction model. A detailed kinetics is implemented, which is represented through POLIMI mechanism (Ranzi et al. Int J Chem Kinet, 46(9):512–542, 2014). Soot formation is modeled using two different approaches, i.e., semi-empirical two-equation models and quadrature methods of moments with first three moments are used and both the approaches consider various subprocesses such as nucleation, coagulation, surface growth, and oxidation. The radiation heat transfer is taken into account considering four fictitious gasses in conjunction with the weighted sum of gray gas (WSSGM) approach for modeling absorption coefficient. The experimental data and earlier published predictions from Young et al. (Proc Combust Inst 25(1):609–617, 1994) and Wen et al. (Combust Flame 135(3):323–340, 2003) respectively are used for assessment of different soot models. The centerline and radial soot volume fraction is reproduced satisfactorily by quadrature method of moments approach, while the strong dependence of combustion products is analyzed through soot–radiation interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ρ:

Mixture density

T:

Temperature

\( Z \) :

Mixture fraction

t :

Time

χ:

Scalar dissipation rate

χst :

Scalar dissipation rate at \( Z = Z_{st} \)

\( Z_{st} \) :

Stoichiometric mixture fraction

erfc 1 :

Inverse complementary error function

σ t :

Turbulent Prandtl number

\( \phi \) :

Representative scalar

a λ :

Absorption coefficient

G λ :

Incident radiation

λ:

Wavelength

\( i \) :

Radiation intensity

\( a_{s} \) :

Characteristic strain rate

\( m_{i} \) :

Mass of the particle

\( M \) :

Concentration of “\( n \)“ moment

\( N \) :

Particle density function

μ eff :

Effective dynamic viscosity

\( n \) :

Moment order

PAH:

Poly-cyclic aromatic hydrocarbons

PDF:

Probability density function

DNS:

Direct numerical simulation

LES:

Large eddy simulation

SIMPLE:

Semi-implicit method for pressure-linked equations

RANS:

Reynolds-Averaged Navier–Stokes

References

  • ANSYS Fluent (2015) 16.0 User’s guide, Csnosburg, PA, USA

    Google Scholar 

  • Appel J, Bockhorn H, Frenklach M (2000) Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C 2 hydrocarbons. Combust Flame 121(1):122–136

    Article  Google Scholar 

  • Baulch DL, Cobos C, Cox RA, Esser C, Frank P, Just T, Warnatz J (1992) Evaluated kinetic data for combustion modelling. J Phys Chem Ref Data 21(3):411–734

    Article  Google Scholar 

  • Bisetti F, Blanquart G, Mueller ME, Pitsch H (2012) On the formation and early evolution of soot in turbulent nonpremixed flames. Combust Flame 159(1):317–335

    Article  Google Scholar 

  • Blanquart G, Pitsch H (2009) A joint volume-surface-hydrogen multi-variate model for soot formation. Combust generated fine carbonaceous particles, pp 437–463

    Google Scholar 

  • Brookes SJ, Moss JB (1999) Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame 116(4):486–503

    Article  Google Scholar 

  • Busupally MR, De A (2016) Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame. Int J Spray Combust Dyn 8:67–85

    Article  Google Scholar 

  • Du DX, Axelbaum RL, Law CK (1991) The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Proc Combust Inst 23(1):1501–1507

    Article  Google Scholar 

  • Dworkin SB, Zhang Q, Thomson MJ, Slavinskaya NA, Riedel U (2011) Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust Flame 158(9):1682–1695

    Article  Google Scholar 

  • Frenklach M (2002a) Method of moments with interpolative closure. Chem Eng Sci 57(12):2229–2239

    Article  Google Scholar 

  • Frenklach M (2002b) Reaction mechanism of soot formation in flames. Phys Chem Phys 4(11):2028–2037

    Article  Google Scholar 

  • Frenklach M, Harris SJ (1987) Aerosol dynamics modeling using the method of moments. J Colloid Interf Sci 118(1):252–261

    Article  Google Scholar 

  • Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Combust Inst 23(1):1559–1566

    Article  Google Scholar 

  • Hall RJ, Smooke MD, Colket MB (1997) Predictions of soot dynamics in opposed jet diffusion flames. Phys Chem Asp Combust Tribut Irvin Glassman 4:189–230

    Google Scholar 

  • Honnet S, Seshadri K, Niemann U, Peters N (2009) A surrogate fuel for kerosene. Proc Combust Inst 32(1):485–492

    Article  Google Scholar 

  • Howell JR, Menguc MP, Siegel R (2010) Thermal radiation heat transfer. CRC press

    Google Scholar 

  • Khan IM, Greeves G (1974) A method for calculating the formation and combustion of soot in diesel engines. Heat transfer in flames. Scripta (Chapter 25)

    Google Scholar 

  • Köhler M, Geigle KP, Meier W, Crosland BM, Thomson KA, Smallwood GJ (2011) Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl Phys B-Lasers Opt 104(2):409–425

    Article  Google Scholar 

  • Lee KB, Thring MW, Beer JM (1962) On the rate of combustion of soot in a laminar soot flame. Combust Flame 6:137–145

    Article  Google Scholar 

  • Lignell DO, Chen JH, Smith PJ, Lu T, Law CK (2007) The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation. Combust Flame 151(1):2–28

    Article  Google Scholar 

  • Lindstedt RP, Louloudi SA (2005) Joint-scalar transported PDF modeling of soot formation and oxidation. Proc Combust Inst 30(1):775–783

    Article  Google Scholar 

  • Lindstedt RP, Maurice LQ (2000) Detailed chemical-kinetic model for aviation fuels. J Propuls Power 16(2):187–195

    Article  Google Scholar 

  • Mahowald N, Ward DS, Kloster S, Flanner MG, Heald CL, Heavens NG, Chuang PY (2011) Aerosol impacts on climate and biogeochemistry. Annu Rev Env Resour 36(1):45

    Article  Google Scholar 

  • Mueller ME, Blanquart G, Pitsch H (2009) Hybrid method of moments for modeling soot formation and growth. Combust Flame 156(6):1143–1155

    Article  Google Scholar 

  • Mueller ME, Blanquart G, Pitsch H (2011) Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames. Proc Combust Inst 33(1):667–674

    Article  Google Scholar 

  • Neoh KG, Howard JB, Sarofim AF (1981) In: Siegla DC, Smith GW (eds) Particulate carbon formation during combustion. Plenum Press, New York, p 261

    Google Scholar 

  • Patterson PM, Kyne AG, Pourkashanian M, Williams A, Wilson CW (2001) Combustion of kerosene in counterflow diffusion flames. J Propuls Power 17(2):453–460

    Article  Google Scholar 

  • Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust 10(3):319–339

    Article  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press

    Google Scholar 

  • Pitsch H, Riesmeier E, Peters N (2000) Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust Sci Technol 158(1):389–406

    Article  Google Scholar 

  • Pope SB (1978) An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J 16(3):279–281

    Article  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Edition 44(46):7520–7540

    Article  Google Scholar 

  • Qamar NH, Alwahabi ZT, Chan QN, Nathan GJ, Roekaerts D, King KD (2009) Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust Flame 156(7):1339–1347

    Article  Google Scholar 

  • Rajeshirke P, Nakod P, Yadav R, Orsino S (2013) Parametric study of Moss-Brookes (MB) and Moss-Brookes-Hall (MBH) model constants for prediction of soot formation in a turbulent Hydrocarbon flames. ASME Gas turbine India conference: V001T03A009

    Google Scholar 

  • Ranzi E, Frassoldati A, Stagni A, Pelucchi M, Cuoci A, Faravelli T (2014) Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels. Int J Chem Kinet 46(9):512–542

    Article  Google Scholar 

  • Reddy M, De A, Yadav R (2015) Effect of precursors and radiation on soot formation in turbulent diffusion flame. Fuel 148:58–72

    Article  Google Scholar 

  • Reddy BM, De A, Yadav R (2016) Numerical investigation of soot formation in turbulent diffusion flame with strong turbulence-chemistry interaction. ASME J Therm Sci Eng Appl 8(1):011001

    Article  Google Scholar 

  • Saini R, De A (2017) Assessment of Soot formation in models in lifted ethylene/air turbulent diffusion flame. Therm Sc Eng Prog 3:49–61

    Article  Google Scholar 

  • Saini R, Reddy M, De A (2017) Soot formation in turbulence diffusion flames: effect of differential diffusion. Locomotive and rail road transportation (Technology, Challenges and Prospects). Springer, pp 193–216

    Google Scholar 

  • Smith TF, Shen ZF, Friedman JN (1982) Evaluation of coefficients for the weighted sum of gray gases model. J Heat Trans 104(4):602–608

    Article  Google Scholar 

  • Taylor PB, Foster PJ (1975) Some gray gas weighting coefficients for CO2-H2O-soot mixtures. Int J Heat Mass Trans 18(11):1331–1332

    Article  Google Scholar 

  • Teini PD, Karwat DM, Atreya A (2012) The effect of CO2/H2O on the formation of soot particles in the homogeneous environment of a rapid compression facility. Combust Flame 159(3):1090–1099

    Article  Google Scholar 

  • Stephen R Turns (2000) An introduction to combustion: concepts and applications. McGraw-Hill

    Google Scholar 

  • Wang H, Du DX, Sung CJ, Law CK (1996) Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. Proc Combust Inst 26(2):2359–2368

    Article  Google Scholar 

  • Wen Z, Yun S, Thomson MJ, Lightstone MF (2003) Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combust Flame 135(3):323–340

    Article  Google Scholar 

  • Westbrook CK, Dryer FL (1984) Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust 10(1):1–57

    Article  Google Scholar 

  • Westenberg AA (1971) Kinetics of NO and CO in lean, premixed hydrocarbon-air flames. Combust Sci Technol 4(1):59–64

    Article  Google Scholar 

  • Yadav R, Kushari A, Verma AK, Eswaran V (2013) Weighted sum of gray gas modeling for nongray radiation in combusting environment using the hybrid solution methodology. Numer Heat Trans Part B: Fund 64(2):174–197

    Article  Google Scholar 

  • Young KJ, Stewart CD, Moss JB (1994) Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: experimental measurement. Proc Combust Inst 25(1):609–617

    Article  Google Scholar 

  • Zhang Q, Guo H, Liu F, Smallwood GJ, Thomson MJ (2009) Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proc Combust Inst 32(1):761–768

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research is provided through Aeronautical Research and Development Board (ARDB), India. Also, the authors would like to acknowledge the IITK computer center (https://www.iitk.ac.in/cc) for providing the support to perform the computation work, data analysis, and article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, R., De, A. (2018). Soot Predictions in Higher Order Hydrocarbon Flames: Assessment of Semi-Empirical Models and Method of Moments. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics