A Source-to-Sink Study of the Paleogene Shulu Sag: Characteristics and Depositional Dynamics of Its Deposits

  • Zaixing JiangEmail author
Part of the Springer Geology book series (SPRINGERGEOL)


The Shulu Sag is located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of East China. The lower part of the Shahejie Formation developed massive conglomerate characterized by low porosity and low permeability with carbonate fragment as its main constituent. According to the sedimentary structure and distribution characteristics, etc., the carbonate breccia may fall into two genetics: one formed by fan-delta channel sedimentation, whereas the other is formed by earthquake-induced slump fan deposition. The braided river is the main sedimentary body of the fan delta and the typical characteristics are imbricate structures with normal graded bed sequence. The latter appears along with typical seismites widely distributed in the sag, which include soft sediment deformation structures (sedimentary dikes, hydraulic shattering, etc.), and brittle deformation (synsedimentary faults).


Carbonate breccia Rock type Fan delta Seismites The Shulu Sag 


  1. Alfaro P, Delgado J, Estévez A, Molina JM, Moretti M, Soria JM (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). Int J Earth Sci 91(3):505–513CrossRefGoogle Scholar
  2. Alsop GI, Marco S (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. J Struct Geol 33(4):433–457CrossRefGoogle Scholar
  3. Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235(3):249–263CrossRefGoogle Scholar
  4. Bertrand S, Charlet F, Chapron E et al (2008) Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S. Palaeogeogr Palaeoclimatol Palaeoecol 259(2):301–322CrossRefGoogle Scholar
  5. Bhattacharya HN, Bandyopadhyay S (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sed Geol 119(3):239–252CrossRefGoogle Scholar
  6. Braga JC, Comas MC (1999) Environmental significance of an uppermost Pliocene carbonate debris flow at site 978. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, vol 161, pp 77–81Google Scholar
  7. Calvo JP, Rodriguez-Pascua M, Martin-Velazquez S et al (1998) Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: an interpretation of loop bedding. Sedimentology 45(2):279–292CrossRefGoogle Scholar
  8. Carrillo E, Beck C, Audemard FA, Moreno E et al (2008) Disentangling late quaternary climatic and seismo-tectonic controls on Lake Mucubají sedimentation (Mérida andes, Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 259(2):284–300CrossRefGoogle Scholar
  9. Chapman RE (1983) Petroleum geology. Elsevier, Amsterdam, 415 pGoogle Scholar
  10. Cui Z, Wu J, Li L et al (2003) The fan delta depositional characteristics and oil-bearing properties of the 3rd Member of the Shahejie Formations in the slope zone of Shulu Sag. J Northwest Univ (Nat Sci Ed) 33(3):320–324Google Scholar
  11. Du Y, Zhang C, Han X (2001) Ancient earthquake events of Kunyang group in Central Yunnan and its geological significance in deposition. Sci China (Series D) 31(4):283–289Google Scholar
  12. Du YS, Xu YJ, Yang JH (2008) Soft-sediment deformation structures related to earthquake from the Devonian of the Eastern North Qilian Mts. and its tectonic significance. Acta Geologica Sinica-English Ed 82(6):1185–1193 Google Scholar
  13. Dutton SP (1982) Pennsylvanian fan-delta and carbonate deposition, Mobeetie Field, Texas Panhandle. AAPG Bulletin 66(4):389–407Google Scholar
  14. Dzulynski S, Smith AJ (1963) Convolute lamination, its origin, preservation, and directional significance. J Sediment Res 33(3):616–627Google Scholar
  15. El Taki H, Pratt BR (2012) Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites: seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada. Bull Can Pet Geol 60(1):37–58CrossRefGoogle Scholar
  16. Ettensohn FR, Zhang CH, Gao LZ et al (2011) Soft-sediment deformation in epicontinental carbonates as evidence of paleoseismicity with evidence for a possible new seismogenic indicator: accordion folds. Sed Geol 235(3):222–233CrossRefGoogle Scholar
  17. Ezquerro L, Moretti M, Liesa CL et al (2015) Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics. Tectonophysics 655:191–205CrossRefGoogle Scholar
  18. Fanetti D, Anselmetti FS, Chapron E et al (2008) Megaturbidite deposits in the Holocene basin fill of Lake Como (southern Alps, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 259(2):323–340CrossRefGoogle Scholar
  19. Faridfathi FY, Ergin M (2012) Holocene sedimentation in the tectonically active Tekirdağ Basin, western Marmara Sea, Turkey. Quatern Int 261:75–90CrossRefGoogle Scholar
  20. Feng Z (2013) Sedimentology in China (Second Edition). Petroleum Industry Press, Beijing, pp 507–615Google Scholar
  21. Fortuin AR, Dabrio CJ (2008) Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology 55(6):1595–1622CrossRefGoogle Scholar
  22. Ghosh SK, Pandey AK, Pandey P, Ray Y, Sinha S (2012) Soft-sediment deformation structures from the Paleoproterozoic Damtha Group of Garhwal Lesser Himalaya, India. Sed Geol 261–262:76–89CrossRefGoogle Scholar
  23. Gierlowski-Kordesch EH (1998) Carbonate deposition in an ephemeral siliciclastic alluvial system: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 140:161–184CrossRefGoogle Scholar
  24. Gierlowski-Kordesch EH (2010) Lacustrine carbonates, in carbonates in continental settings, vol 1: facies, environments, and processes. In: Alonso-Zarza AM, Tanner LH (eds) Developments in sedimentology, vol 61, Elsevier, Amsterdam, pp 1–101Google Scholar
  25. Gorsline DS, De Diego T, Nava-Sanchez EH (2000) Seismically triggered turbidites in small margin basins: Alfonso Basin, western Gulf of California and Santa Monica Basin, California borderland. Sed Geol 135(1):21–35CrossRefGoogle Scholar
  26. Hempton MR, Dewey JF (1983) Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98(3):T7–T14CrossRefGoogle Scholar
  27. Hibsch C, Alvarado A, Yepes H et al (1997) Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): a paleoseismic history recorded in lacustrine sediments. J Geodyn 24(1):259–280CrossRefGoogle Scholar
  28. Hu X, Chen H, Ji X et al (2005) The Jurassic delta deposit system tract and sedimentation model in the western Sichuan foreland basin, China. Petrol Geol Exp 27(3):226–231Google Scholar
  29. Jiang Z (2010) Sedimentology (second edition). Petroleum Industry Press, BeijingGoogle Scholar
  30. Jiang Z, Chen D, Qiu L et al (2007) Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology 54(2):265–292CrossRefGoogle Scholar
  31. Kahle CF (2002) Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, U.S.A. J Sediment Res 72(1):201–216CrossRefGoogle Scholar
  32. Kong DY, Shen H, Liu JY, Yin W (2005) Origin of the transverse accommodation zone of the Shulu subbasin in the Jizhong depression. Geology in China 32:166–171 (in Chinese with English abstract)Google Scholar
  33. Leroy SAG, Schwab MJ, Costa PJM (2010) Seismic influence on the last 1500-year infill history of Lake Sapanca (North Anatolian Fault, NW Turkey). Tectonophysics 486(1):15–27CrossRefGoogle Scholar
  34. Li Y (1982) Early Oligocene fan-deltas in Liaohe Rift. Pet Expoloration Dev 9(4):17–23Google Scholar
  35. Li W (1998) Fan delta deposits in Jurassic in the depression of the SW Tarim Basin. Acta Sedimentologica Sinica 16(2):150–154Google Scholar
  36. Li H (2015a) Sequence stratigraphy and characteristics of the tight reservoirs in the 3rd member of the Eocene Shahejie Formation, Shulu Sag: [master degree thesis]. China University of Geosciences (Beijing), BeijingGoogle Scholar
  37. Li Q (2015b) Evaluation of rudstone and marlstone tight reservoir in lower part of the Shahejie 3 formation of the Shulu Sag, Jizhong depression. Doctoral degree thesis. China University of Geosciences (Beijing), BeijingGoogle Scholar
  38. Li Y, Liu C, Wang X (2008) Discovery and significance of seismites in Late Tertiary Yanchang formation of Ordos Basin. Acta Sedimentol Sin 26(5):772–779Google Scholar
  39. Li Y, Gong L, Zeng L et al (2012) Characteristics of features and their contribution to the deliverability of tight conglomerate reservoirs in the Jiulongshan Structure. Nat Gas Ind 32(1):22–26Google Scholar
  40. Liang H, Kuang H, Liu J et al (2007) Discussion on origin for marls of the member 3 of Shahejie formation of Paleogene in Shulu Sag of Central Hebei Depression. J Palaeogeoraphy 9(2):167–174Google Scholar
  41. Liu X, Zheng L, Jiang Z, Kong X (2017) Formation mechanisms of rudstones and their effects on reservoir quality in the Shulu Sag, Bohai Bay Basin, eastern China. J Earth Sci 28(6):1097–1108Google Scholar
  42. Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22(2):157–204CrossRefGoogle Scholar
  43. Luo S, Lin C, Zhai Q et al (2009) Reservoir sedimentation characteristics and sedimentation model of lower Es_3 of Bijia block in Binnan Oilfield. J China Univ Petrol (Ed Nat Sci), 33(2):12–17Google Scholar
  44. Martel AT, Gibling MR (1993) Clastic dykes of the Devono-Carboniferous Horton Bluff Formation, Nova Scotia: storm-related structures in shallow lakes. Sed Geol 87(1):103–119CrossRefGoogle Scholar
  45. Mcconnico TS, Bassett KN (2007) Gravelly Gilbert-type fan delta on the Conway Coast, New Zealand: foreset depositional processes and clast imbrications. Sed Geol 198(3):147–166CrossRefGoogle Scholar
  46. McKee ED, Goldberg M (1969) Experiments on formation of contorted structures in mud. Geol Soc Am Bull 80(2):231–244CrossRefGoogle Scholar
  47. McLaughlin PI, Brett CE (2004) Eustatic and tectonic control on the distribution of marine seismites: examples from the Upper Ordovician of Kentucky, USA. Sed Geol 168(3):165–192CrossRefGoogle Scholar
  48. Mohindra R, Bagati TN (1996) Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sed Geol 101(1):69–83CrossRefGoogle Scholar
  49. Molina JM, Alfaro P, Moretti M, Soria JM (1998) Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova 10:145–150CrossRefGoogle Scholar
  50. Montenat C, Barrier P, d’Estevou PO (1991) Some aspects of the recent tectonics in the strait of Messina, Italy. Tectonophysics 194(3):203–215CrossRefGoogle Scholar
  51. Montenat C, Barrier P, d’Estevou PO et al (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196(1):5–30CrossRefGoogle Scholar
  52. Moretti M (2000) Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sed Geol 135(1):167–179CrossRefGoogle Scholar
  53. Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sed Geol 196(1):31–45CrossRefGoogle Scholar
  54. Moretti M, Alfaro P, Caselles O et al (1999) Modelling seismites with a digital shaking table. Tectonophysics 304(4):369–383CrossRefGoogle Scholar
  55. Moretti M, Soria JM, Alfaro P, Walsh N (2001) Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies 44(1):283–294CrossRefGoogle Scholar
  56. Mugnier JL, Huyghe P, Gajurel AP et al (2011) Seismites in the Kathmandu basin and seismic hazard in central Himalaya. Tectonophysics 509(1):33–49CrossRefGoogle Scholar
  57. Mutti E, Lucchi FR, Séguret M et al (1984) Seismoturbidites: a new group of resedimented deposits. Mar Geol 55(1):103–116CrossRefGoogle Scholar
  58. Nakajima T, Kanai Y (2000) Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the eastern margin of the Japan Sea. Sed Geol 135(1):1–19CrossRefGoogle Scholar
  59. Neuwerth R, Suter F, Guzman CA et al (2006) Soft-sediment deformation in a tectonically active area: the Plio-Pleistocene Zarzal formation in the Cauca Valley (Western Colombia). Sed Geol 186(1):67–88CrossRefGoogle Scholar
  60. Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41(2):233–253CrossRefGoogle Scholar
  61. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis-an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44(1):1–76CrossRefGoogle Scholar
  62. Owen G (1987) Deformation processes in unconsolidated sands. In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks. Geological Society special publication 29, pp 11–24Google Scholar
  63. Owen G (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43(2):279–293CrossRefGoogle Scholar
  64. Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sed Geol 235(3):141–147CrossRefGoogle Scholar
  65. Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sed Geol 235(3):133–140CrossRefGoogle Scholar
  66. Pollard J, Steel R, Undersrud E (1982) Facies sequences and trace fossils in lacustrine/fan delta deposits, Hornelen Basin (M. Devonian), western Norway. Sed Geol 32(1):63–87CrossRefGoogle Scholar
  67. Pondrelli M, Rossi AP, Marinangeli L et al (2008) Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197(2):429–451CrossRefGoogle Scholar
  68. Pope MC, Read JF, Bambach R et al (1997) Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: sedimentary recorders of earthquakes in the Appalachian basin. Geol Soc Am Bull 109(4):489–503CrossRefGoogle Scholar
  69. Pratt BR (1994) Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: a test for tectonic control of peritidal carbonate cyclicity. Geology 22(12):1091–1094CrossRefGoogle Scholar
  70. Pratt BR (1998) Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sed Geol 117(1):1–10CrossRefGoogle Scholar
  71. Qiao X, Li H (2009) Effect of earthquake and ancient earthquake on sediments. J Palaeogeoraphy 11(6):593–610Google Scholar
  72. Qiao X, Song T, Gao L et al (1994) Seismic sequences of carbonate rock vibration liquefaction. Acta Geologica Sninca 68(1):16–34Google Scholar
  73. Rana N, Bhattacharya F, Basavaiah N et al (2013) Soft sediment deformation structures and their implications for Late Quaternary seismicity on the South Tibetan Detachment System, Central Himalaya (Uttarakhand), India. Tectonophysics 592:165–174CrossRefGoogle Scholar
  74. Ren Y (1986) Depositional environments of Shulu depression-viewed from the point of micropaleotanic florae. Acta Sedimentol Sin 4(4):101–107Google Scholar
  75. Rodríguez-López JP, Meléndez N, Soria AR, Liesa CL, Van Loon AJ (2007) Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, mid-Cretaceous, eastern Spain). Sed Geol 201(3):461–484CrossRefGoogle Scholar
  76. Rodríguez-Pascua MA, Calvo JP, De Vicente G et al (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sed Geol 135(1):117–135CrossRefGoogle Scholar
  77. Rodríguez-Pascua MA, Garduño-Monroy VH, Israde-Alcántara I et al (2010) Estimation of the paleoepicentral area from the spatial gradient of deformation in lacustrine seismites (Tierras Blancas Basin, Mexico). Quatern Int 219(1):66–78CrossRefGoogle Scholar
  78. Rossetti DF, Góes AM (2000) Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó formation, northern Brazil. Sediment Geol l 135(1):137–156CrossRefGoogle Scholar
  79. Scott B, Price S (1988) Earthquake-induced structures in young sediments. Tectonophysics 147(1):165–170CrossRefGoogle Scholar
  80. Séguret M, Labaume P, Madariaga R (1984) Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin (Spain). Mar Geol 55(1):117–131CrossRefGoogle Scholar
  81. Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13(1–2):155–159CrossRefGoogle Scholar
  82. Seilacher A (1984) Sedimentary structures tentatively attributed to seismic events. Mar Geol 55(1):1–12CrossRefGoogle Scholar
  83. Sheng H (1993) The fan delta sediments in Liaohe Faulted Basin. Petrol Expoloration Dev 20(3):60–66Google Scholar
  84. Shiki T, Kumon F, Inouchi Y et al (2000) Sedimentary features of the seismo-turbidites, Lake Biwa, Japan. Sed Geol 135(1):37–50CrossRefGoogle Scholar
  85. Sneh A (1979) Late Pleistocene fan-deltas along the Dead Sea rift. J Sediment Res 49(2):541–552Google Scholar
  86. Song TR (1988) A probable earthquake-tsunami sequence in Precambrian carbonate strata of Ming Tombs District, Beijing. Chin Sci Bull 33(13):1121–1124Google Scholar
  87. Strachan LJ (2002) Slump-initiated and controlled syndepositional sandstone remobilization: an example from the Namurian of County Clare, Ireland. Sedimentology 49(1):25–41CrossRefGoogle Scholar
  88. Sun D, Shen H, Liu J et al (2005) Origin of the transverse accommodation zone of the Shulu subbasin in the Jizhong depression. Chin Geol 32(04):166–171Google Scholar
  89. Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: evidence for pre-Hispanic seismic activity? Sed Geol 235(3–4):188–199CrossRefGoogle Scholar
  90. Tamura T, Masuda F (2003) Shallow-marine fan delta slope deposits with large-scale cross-stratification: the Plio-Pleistocene Zaimokuzawa formation in the Ishikari Hills, northern Japan. Sed Geol 158(3):195–207CrossRefGoogle Scholar
  91. Tanner PWG (1998) Interstratal dewatering origin for polygonal patterns of sand-filled cracks: a case study from late Proterozoic metasediments of Islay, Scotland. Sedimentology 45:71–89CrossRefGoogle Scholar
  92. Taşgin KC, Orhan H, Türkmen I et al (2011) Soft-sediment deformation structures in the late Miocene Şelmo Formation around Adiyaman area, Southeastern Turkey. Sed Geol 235(3):277–291CrossRefGoogle Scholar
  93. Tian M (2010) Formation model of seismic geologic body in Wenchuan earthquake. Master degree thesis. Southwest Petroleum University, ChengduGoogle Scholar
  94. Törő B, Pratt BR (2015) Eocene paleoseismic record of the Green River formation, Fossil Basin, Wyoming-implications of synsedimentary deformation structures in lacustrine carbonate mudstones. J Sediment Res 2015(85):855–884CrossRefGoogle Scholar
  95. Törő B, Pratt BR, Renaut RW (2015) Tectonically induced change in lake evolution recorded by seismites in the Eocene Green River Formation, Wyoming. Terra Nova 27:218–224CrossRefGoogle Scholar
  96. Valero-Garcés B, Morellón M, Moreno A et al (2014) Lacustrine carbonates of Iberian Karst Lakes: sources, processes and depositional environments. Sed Geol 299(15):1–29CrossRefGoogle Scholar
  97. Van Daele M, Cnudde V, Duyck P et al (2014) Multidirectional, synchronously-triggered seismo-turbidites and debrites revealed by X-ray computed tomography (CT). Sedimentology 61(4):861–880CrossRefGoogle Scholar
  98. Vos RG (1981) Sedimentology of an Ordovician fan delta complex, western Libya. Sed Geol 29(2):153–170CrossRefGoogle Scholar
  99. Wagner B, Reicherter K, Daut G et al (2008) The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259(2):341–356CrossRefGoogle Scholar
  100. Wallace K, Eyles N (2015) Seismites within Ordovician-Silurian carbonates and clastics of Southern Ontario, Canada and implications for intraplate seismicity. Sed Geol 316:80–95CrossRefGoogle Scholar
  101. Wang Q (1993) Fan delta model. Petroleum Industry Press, BeijingGoogle Scholar
  102. Wang W (2010) Characteristics and control factors of earthquake accumulation in Xie Shan family of Longmen Mountain. Master degree thesis. Southwest Petroleum University, ChengduGoogle Scholar
  103. Wang S (2014) Lacustrine Marl reservoir formation and distribution of Shulu Sag. Doctoral degree thesis. China University of Mining and Technology (Beijing), BeijingGoogle Scholar
  104. Wescott WA, Ethridge FG (1980) Fan-delta sedimentology and tectonic setting—Yallahs fan delta, southeast Jamaica. AAPG Bull 64(3):374–399Google Scholar
  105. Xue L, Galloway WE (1991) Classification of fan delta, braided-river delta and delta system. Acta Geologica Sninca 65(2):141–153Google Scholar
  106. Yang J (2010) The study on the sedimentary microfacies and diagenesis of Shahejie formation of West Slope of Shulu Depression. China University of Petroleum, DongyingGoogle Scholar
  107. Yang J, Wang H, Nie L et al (2014) Discovery and geological significance of seismites of Paleogene in Jinxian Sag, Jizhong depression. Acta Sedimentol Sin 32(4):634–642Google Scholar
  108. Yuan J (2004) The property and geological significance of seismites of Paleogene in Huimin Sag, Shandong Province. Acta Sedimentol Sin 22(1):41–46Google Scholar
  109. Yuan J, Chen X, Tian H (2006) Formation of loop bedding in Jiyang Sub-basin, Paleogene. Acta Sedimentol Sin 24(5):666–671Google Scholar
  110. Zhang F (2006) Fan delta and braided delta sediments in Baiyinchagan depression. Acta Geoscientica Sninca 26(6):553–556Google Scholar
  111. Zhang C, Liu Z, Shi D et al (2000) Formed proceesing and evaluation disciplinarian of dan delta. Acta Sedimentol Sin 18(4):521–526Google Scholar
  112. Zhang C, Wu Z, Gao L et al (2007) Earthquake-induced soft-sediment deformation structures in the Mesoproterozoic Wumishan Formation, North China, and their geologic implications. Sci China, Ser D Earth Sci 50(3):350–358CrossRefGoogle Scholar
  113. Zhao X, Li Q, Jiang Z et al (2014) Organic geochemistry and reservoir characterization of the organic matter-rich calcilutite in the Shulu Sag, Bohai Bay Basin, North China. Mar Pet Geol 51:239–255CrossRefGoogle Scholar
  114. Zheng L, Jiang Z, Liu H et al (2015) Core evidence of paleoseismic events in Paleogene deposits of the Shulu Sag in the Bohai Bay Basin, east China, and their petroleum geologic significance. Sed Geol 328:33–54CrossRefGoogle Scholar
  115. Zhu X, Xin Q (1994) Important features of Lacustrine Fan. J Univ Petrol, China (Ed Nat Sci) 18(3):6–11Google Scholar
  116. Zou C, Zhao Z, Yang H et al (2009) Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentol Sin 27(6):1065–1075Google Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.China University of GeosciencesBeijingChina

Personalised recommendations