Skip to main content

A Source-to-Sink Study of the Paleogene Shulu Sag: Characteristics and Depositional Dynamics of Its Deposits

  • Chapter
  • First Online:
Book cover Sedimentary Dynamics of Windfield-Source-Basin System

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 673 Accesses

Abstract

The Shulu Sag is located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of East China. The lower part of the Shahejie Formation developed massive conglomerate characterized by low porosity and low permeability with carbonate fragment as its main constituent. According to the sedimentary structure and distribution characteristics, etc., the carbonate breccia may fall into two genetics: one formed by fan-delta channel sedimentation, whereas the other is formed by earthquake-induced slump fan deposition. The braided river is the main sedimentary body of the fan delta and the typical characteristics are imbricate structures with normal graded bed sequence. The latter appears along with typical seismites widely distributed in the sag, which include soft sediment deformation structures (sedimentary dikes, hydraulic shattering, etc.), and brittle deformation (synsedimentary faults).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro P, Delgado J, Estévez A, Molina JM, Moretti M, Soria JM (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). Int J Earth Sci 91(3):505–513

    Article  Google Scholar 

  • Alsop GI, Marco S (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. J Struct Geol 33(4):433–457

    Article  Google Scholar 

  • Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235(3):249–263

    Article  Google Scholar 

  • Bertrand S, Charlet F, Chapron E et al (2008) Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S. Palaeogeogr Palaeoclimatol Palaeoecol 259(2):301–322

    Article  Google Scholar 

  • Bhattacharya HN, Bandyopadhyay S (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sed Geol 119(3):239–252

    Article  Google Scholar 

  • Braga JC, Comas MC (1999) Environmental significance of an uppermost Pliocene carbonate debris flow at site 978. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, vol 161, pp 77–81

    Google Scholar 

  • Calvo JP, Rodriguez-Pascua M, Martin-Velazquez S et al (1998) Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: an interpretation of loop bedding. Sedimentology 45(2):279–292

    Article  Google Scholar 

  • Carrillo E, Beck C, Audemard FA, Moreno E et al (2008) Disentangling late quaternary climatic and seismo-tectonic controls on Lake Mucubají sedimentation (Mérida andes, Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 259(2):284–300

    Article  Google Scholar 

  • Chapman RE (1983) Petroleum geology. Elsevier, Amsterdam, 415 p

    Google Scholar 

  • Cui Z, Wu J, Li L et al (2003) The fan delta depositional characteristics and oil-bearing properties of the 3rd Member of the Shahejie Formations in the slope zone of Shulu Sag. J Northwest Univ (Nat Sci Ed) 33(3):320–324

    Google Scholar 

  • Du Y, Zhang C, Han X (2001) Ancient earthquake events of Kunyang group in Central Yunnan and its geological significance in deposition. Sci China (Series D) 31(4):283–289

    Google Scholar 

  • Du YS, Xu YJ, Yang JH (2008) Soft-sediment deformation structures related to earthquake from the Devonian of the Eastern North Qilian Mts. and its tectonic significance. Acta Geologica Sinica-English Ed 82(6):1185–1193

    Google Scholar 

  • Dutton SP (1982) Pennsylvanian fan-delta and carbonate deposition, Mobeetie Field, Texas Panhandle. AAPG Bulletin 66(4):389–407

    Google Scholar 

  • Dzulynski S, Smith AJ (1963) Convolute lamination, its origin, preservation, and directional significance. J Sediment Res 33(3):616–627

    Google Scholar 

  • El Taki H, Pratt BR (2012) Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites: seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada. Bull Can Pet Geol 60(1):37–58

    Article  Google Scholar 

  • Ettensohn FR, Zhang CH, Gao LZ et al (2011) Soft-sediment deformation in epicontinental carbonates as evidence of paleoseismicity with evidence for a possible new seismogenic indicator: accordion folds. Sed Geol 235(3):222–233

    Article  Google Scholar 

  • Ezquerro L, Moretti M, Liesa CL et al (2015) Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics. Tectonophysics 655:191–205

    Article  Google Scholar 

  • Fanetti D, Anselmetti FS, Chapron E et al (2008) Megaturbidite deposits in the Holocene basin fill of Lake Como (southern Alps, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 259(2):323–340

    Article  Google Scholar 

  • Faridfathi FY, Ergin M (2012) Holocene sedimentation in the tectonically active TekirdaÄŸ Basin, western Marmara Sea, Turkey. Quatern Int 261:75–90

    Article  Google Scholar 

  • Feng Z (2013) Sedimentology in China (Second Edition). Petroleum Industry Press, Beijing, pp 507–615

    Google Scholar 

  • Fortuin AR, Dabrio CJ (2008) Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology 55(6):1595–1622

    Article  Google Scholar 

  • Ghosh SK, Pandey AK, Pandey P, Ray Y, Sinha S (2012) Soft-sediment deformation structures from the Paleoproterozoic Damtha Group of Garhwal Lesser Himalaya, India. Sed Geol 261–262:76–89

    Article  Google Scholar 

  • Gierlowski-Kordesch EH (1998) Carbonate deposition in an ephemeral siliciclastic alluvial system: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 140:161–184

    Article  Google Scholar 

  • Gierlowski-Kordesch EH (2010) Lacustrine carbonates, in carbonates in continental settings, vol 1: facies, environments, and processes. In: Alonso-Zarza AM, Tanner LH (eds) Developments in sedimentology, vol 61, Elsevier, Amsterdam, pp 1–101

    Google Scholar 

  • Gorsline DS, De Diego T, Nava-Sanchez EH (2000) Seismically triggered turbidites in small margin basins: Alfonso Basin, western Gulf of California and Santa Monica Basin, California borderland. Sed Geol 135(1):21–35

    Article  Google Scholar 

  • Hempton MR, Dewey JF (1983) Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98(3):T7–T14

    Article  Google Scholar 

  • Hibsch C, Alvarado A, Yepes H et al (1997) Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): a paleoseismic history recorded in lacustrine sediments. J Geodyn 24(1):259–280

    Article  Google Scholar 

  • Hu X, Chen H, Ji X et al (2005) The Jurassic delta deposit system tract and sedimentation model in the western Sichuan foreland basin, China. Petrol Geol Exp 27(3):226–231

    Google Scholar 

  • Jiang Z (2010) Sedimentology (second edition). Petroleum Industry Press, Beijing

    Google Scholar 

  • Jiang Z, Chen D, Qiu L et al (2007) Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology 54(2):265–292

    Article  Google Scholar 

  • Kahle CF (2002) Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, U.S.A. J Sediment Res 72(1):201–216

    Article  Google Scholar 

  • Kong DY, Shen H, Liu JY, Yin W (2005) Origin of the transverse accommodation zone of the Shulu subbasin in the Jizhong depression. Geology in China 32:166–171 (in Chinese with English abstract)

    Google Scholar 

  • Leroy SAG, Schwab MJ, Costa PJM (2010) Seismic influence on the last 1500-year infill history of Lake Sapanca (North Anatolian Fault, NW Turkey). Tectonophysics 486(1):15–27

    Article  Google Scholar 

  • Li Y (1982) Early Oligocene fan-deltas in Liaohe Rift. Pet Expoloration Dev 9(4):17–23

    Google Scholar 

  • Li W (1998) Fan delta deposits in Jurassic in the depression of the SW Tarim Basin. Acta Sedimentologica Sinica 16(2):150–154

    Google Scholar 

  • Li H (2015a) Sequence stratigraphy and characteristics of the tight reservoirs in the 3rd member of the Eocene Shahejie Formation, Shulu Sag: [master degree thesis]. China University of Geosciences (Beijing), Beijing

    Google Scholar 

  • Li Q (2015b) Evaluation of rudstone and marlstone tight reservoir in lower part of the Shahejie 3 formation of the Shulu Sag, Jizhong depression. Doctoral degree thesis. China University of Geosciences (Beijing), Beijing

    Google Scholar 

  • Li Y, Liu C, Wang X (2008) Discovery and significance of seismites in Late Tertiary Yanchang formation of Ordos Basin. Acta Sedimentol Sin 26(5):772–779

    Google Scholar 

  • Li Y, Gong L, Zeng L et al (2012) Characteristics of features and their contribution to the deliverability of tight conglomerate reservoirs in the Jiulongshan Structure. Nat Gas Ind 32(1):22–26

    Google Scholar 

  • Liang H, Kuang H, Liu J et al (2007) Discussion on origin for marls of the member 3 of Shahejie formation of Paleogene in Shulu Sag of Central Hebei Depression. J Palaeogeoraphy 9(2):167–174

    Google Scholar 

  • Liu X, Zheng L, Jiang Z, Kong X (2017) Formation mechanisms of rudstones and their effects on reservoir quality in the Shulu Sag, Bohai Bay Basin, eastern China. J Earth Sci 28(6):1097–1108

    Google Scholar 

  • Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22(2):157–204

    Article  Google Scholar 

  • Luo S, Lin C, Zhai Q et al (2009) Reservoir sedimentation characteristics and sedimentation model of lower Es_3 of Bijia block in Binnan Oilfield. J China Univ Petrol (Ed Nat Sci), 33(2):12–17

    Google Scholar 

  • Martel AT, Gibling MR (1993) Clastic dykes of the Devono-Carboniferous Horton Bluff Formation, Nova Scotia: storm-related structures in shallow lakes. Sed Geol 87(1):103–119

    Article  Google Scholar 

  • Mcconnico TS, Bassett KN (2007) Gravelly Gilbert-type fan delta on the Conway Coast, New Zealand: foreset depositional processes and clast imbrications. Sed Geol 198(3):147–166

    Article  Google Scholar 

  • McKee ED, Goldberg M (1969) Experiments on formation of contorted structures in mud. Geol Soc Am Bull 80(2):231–244

    Article  Google Scholar 

  • McLaughlin PI, Brett CE (2004) Eustatic and tectonic control on the distribution of marine seismites: examples from the Upper Ordovician of Kentucky, USA. Sed Geol 168(3):165–192

    Article  Google Scholar 

  • Mohindra R, Bagati TN (1996) Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sed Geol 101(1):69–83

    Article  Google Scholar 

  • Molina JM, Alfaro P, Moretti M, Soria JM (1998) Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova 10:145–150

    Article  Google Scholar 

  • Montenat C, Barrier P, d’Estevou PO (1991) Some aspects of the recent tectonics in the strait of Messina, Italy. Tectonophysics 194(3):203–215

    Article  Google Scholar 

  • Montenat C, Barrier P, d’Estevou PO et al (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196(1):5–30

    Article  Google Scholar 

  • Moretti M (2000) Soft-sediment deformation structures interpreted as seismites in middle-late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sed Geol 135(1):167–179

    Article  Google Scholar 

  • Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantÊ»Arcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sed Geol 196(1):31–45

    Article  Google Scholar 

  • Moretti M, Alfaro P, Caselles O et al (1999) Modelling seismites with a digital shaking table. Tectonophysics 304(4):369–383

    Article  Google Scholar 

  • Moretti M, Soria JM, Alfaro P, Walsh N (2001) Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies 44(1):283–294

    Article  Google Scholar 

  • Mugnier JL, Huyghe P, Gajurel AP et al (2011) Seismites in the Kathmandu basin and seismic hazard in central Himalaya. Tectonophysics 509(1):33–49

    Article  Google Scholar 

  • Mutti E, Lucchi FR, Séguret M et al (1984) Seismoturbidites: a new group of resedimented deposits. Mar Geol 55(1):103–116

    Article  Google Scholar 

  • Nakajima T, Kanai Y (2000) Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the eastern margin of the Japan Sea. Sed Geol 135(1):1–19

    Article  Google Scholar 

  • Neuwerth R, Suter F, Guzman CA et al (2006) Soft-sediment deformation in a tectonically active area: the Plio-Pleistocene Zarzal formation in the Cauca Valley (Western Colombia). Sed Geol 186(1):67–88

    Article  Google Scholar 

  • Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41(2):233–253

    Article  Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis-an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44(1):1–76

    Article  Google Scholar 

  • Owen G (1987) Deformation processes in unconsolidated sands. In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks. Geological Society special publication 29, pp 11–24

    Google Scholar 

  • Owen G (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43(2):279–293

    Article  Google Scholar 

  • Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sed Geol 235(3):141–147

    Article  Google Scholar 

  • Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sed Geol 235(3):133–140

    Article  Google Scholar 

  • Pollard J, Steel R, Undersrud E (1982) Facies sequences and trace fossils in lacustrine/fan delta deposits, Hornelen Basin (M. Devonian), western Norway. Sed Geol 32(1):63–87

    Article  Google Scholar 

  • Pondrelli M, Rossi AP, Marinangeli L et al (2008) Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197(2):429–451

    Article  Google Scholar 

  • Pope MC, Read JF, Bambach R et al (1997) Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: sedimentary recorders of earthquakes in the Appalachian basin. Geol Soc Am Bull 109(4):489–503

    Article  Google Scholar 

  • Pratt BR (1994) Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: a test for tectonic control of peritidal carbonate cyclicity. Geology 22(12):1091–1094

    Article  Google Scholar 

  • Pratt BR (1998) Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sed Geol 117(1):1–10

    Article  Google Scholar 

  • Qiao X, Li H (2009) Effect of earthquake and ancient earthquake on sediments. J Palaeogeoraphy 11(6):593–610

    Google Scholar 

  • Qiao X, Song T, Gao L et al (1994) Seismic sequences of carbonate rock vibration liquefaction. Acta Geologica Sninca 68(1):16–34

    Google Scholar 

  • Rana N, Bhattacharya F, Basavaiah N et al (2013) Soft sediment deformation structures and their implications for Late Quaternary seismicity on the South Tibetan Detachment System, Central Himalaya (Uttarakhand), India. Tectonophysics 592:165–174

    Article  Google Scholar 

  • Ren Y (1986) Depositional environments of Shulu depression-viewed from the point of micropaleotanic florae. Acta Sedimentol Sin 4(4):101–107

    Google Scholar 

  • Rodríguez-López JP, Meléndez N, Soria AR, Liesa CL, Van Loon AJ (2007) Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, mid-Cretaceous, eastern Spain). Sed Geol 201(3):461–484

    Article  Google Scholar 

  • Rodríguez-Pascua MA, Calvo JP, De Vicente G et al (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sed Geol 135(1):117–135

    Article  Google Scholar 

  • Rodríguez-Pascua MA, Garduño-Monroy VH, Israde-Alcántara I et al (2010) Estimation of the paleoepicentral area from the spatial gradient of deformation in lacustrine seismites (Tierras Blancas Basin, Mexico). Quatern Int 219(1):66–78

    Article  Google Scholar 

  • Rossetti DF, Góes AM (2000) Deciphering the sedimentological imprint of paleoseismic events: an example from the Aptian Codó formation, northern Brazil. Sediment Geol l 135(1):137–156

    Article  Google Scholar 

  • Scott B, Price S (1988) Earthquake-induced structures in young sediments. Tectonophysics 147(1):165–170

    Article  Google Scholar 

  • Séguret M, Labaume P, Madariaga R (1984) Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin (Spain). Mar Geol 55(1):117–131

    Article  Google Scholar 

  • Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13(1–2):155–159

    Article  Google Scholar 

  • Seilacher A (1984) Sedimentary structures tentatively attributed to seismic events. Mar Geol 55(1):1–12

    Article  Google Scholar 

  • Sheng H (1993) The fan delta sediments in Liaohe Faulted Basin. Petrol Expoloration Dev 20(3):60–66

    Google Scholar 

  • Shiki T, Kumon F, Inouchi Y et al (2000) Sedimentary features of the seismo-turbidites, Lake Biwa, Japan. Sed Geol 135(1):37–50

    Article  Google Scholar 

  • Sneh A (1979) Late Pleistocene fan-deltas along the Dead Sea rift. J Sediment Res 49(2):541–552

    Google Scholar 

  • Song TR (1988) A probable earthquake-tsunami sequence in Precambrian carbonate strata of Ming Tombs District, Beijing. Chin Sci Bull 33(13):1121–1124

    Google Scholar 

  • Strachan LJ (2002) Slump-initiated and controlled syndepositional sandstone remobilization: an example from the Namurian of County Clare, Ireland. Sedimentology 49(1):25–41

    Article  Google Scholar 

  • Sun D, Shen H, Liu J et al (2005) Origin of the transverse accommodation zone of the Shulu subbasin in the Jizhong depression. Chin Geol 32(04):166–171

    Google Scholar 

  • Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: evidence for pre-Hispanic seismic activity? Sed Geol 235(3–4):188–199

    Article  Google Scholar 

  • Tamura T, Masuda F (2003) Shallow-marine fan delta slope deposits with large-scale cross-stratification: the Plio-Pleistocene Zaimokuzawa formation in the Ishikari Hills, northern Japan. Sed Geol 158(3):195–207

    Article  Google Scholar 

  • Tanner PWG (1998) Interstratal dewatering origin for polygonal patterns of sand-filled cracks: a case study from late Proterozoic metasediments of Islay, Scotland. Sedimentology 45:71–89

    Article  Google Scholar 

  • TaÅŸgin KC, Orhan H, Türkmen I et al (2011) Soft-sediment deformation structures in the late Miocene Åželmo Formation around Adiyaman area, Southeastern Turkey. Sed Geol 235(3):277–291

    Article  Google Scholar 

  • Tian M (2010) Formation model of seismic geologic body in Wenchuan earthquake. Master degree thesis. Southwest Petroleum University, Chengdu

    Google Scholar 

  • TörÅ‘ B, Pratt BR (2015) Eocene paleoseismic record of the Green River formation, Fossil Basin, Wyoming-implications of synsedimentary deformation structures in lacustrine carbonate mudstones. J Sediment Res 2015(85):855–884

    Article  Google Scholar 

  • TörÅ‘ B, Pratt BR, Renaut RW (2015) Tectonically induced change in lake evolution recorded by seismites in the Eocene Green River Formation, Wyoming. Terra Nova 27:218–224

    Article  Google Scholar 

  • Valero-Garcés B, Morellón M, Moreno A et al (2014) Lacustrine carbonates of Iberian Karst Lakes: sources, processes and depositional environments. Sed Geol 299(15):1–29

    Article  Google Scholar 

  • Van Daele M, Cnudde V, Duyck P et al (2014) Multidirectional, synchronously-triggered seismo-turbidites and debrites revealed by X-ray computed tomography (CT). Sedimentology 61(4):861–880

    Article  Google Scholar 

  • Vos RG (1981) Sedimentology of an Ordovician fan delta complex, western Libya. Sed Geol 29(2):153–170

    Article  Google Scholar 

  • Wagner B, Reicherter K, Daut G et al (2008) The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259(2):341–356

    Article  Google Scholar 

  • Wallace K, Eyles N (2015) Seismites within Ordovician-Silurian carbonates and clastics of Southern Ontario, Canada and implications for intraplate seismicity. Sed Geol 316:80–95

    Article  Google Scholar 

  • Wang Q (1993) Fan delta model. Petroleum Industry Press, Beijing

    Google Scholar 

  • Wang W (2010) Characteristics and control factors of earthquake accumulation in Xie Shan family of Longmen Mountain. Master degree thesis. Southwest Petroleum University, Chengdu

    Google Scholar 

  • Wang S (2014) Lacustrine Marl reservoir formation and distribution of Shulu Sag. Doctoral degree thesis. China University of Mining and Technology (Beijing), Beijing

    Google Scholar 

  • Wescott WA, Ethridge FG (1980) Fan-delta sedimentology and tectonic setting—Yallahs fan delta, southeast Jamaica. AAPG Bull 64(3):374–399

    Google Scholar 

  • Xue L, Galloway WE (1991) Classification of fan delta, braided-river delta and delta system. Acta Geologica Sninca 65(2):141–153

    Google Scholar 

  • Yang J (2010) The study on the sedimentary microfacies and diagenesis of Shahejie formation of West Slope of Shulu Depression. China University of Petroleum, Dongying

    Google Scholar 

  • Yang J, Wang H, Nie L et al (2014) Discovery and geological significance of seismites of Paleogene in Jinxian Sag, Jizhong depression. Acta Sedimentol Sin 32(4):634–642

    Google Scholar 

  • Yuan J (2004) The property and geological significance of seismites of Paleogene in Huimin Sag, Shandong Province. Acta Sedimentol Sin 22(1):41–46

    Google Scholar 

  • Yuan J, Chen X, Tian H (2006) Formation of loop bedding in Jiyang Sub-basin, Paleogene. Acta Sedimentol Sin 24(5):666–671

    Google Scholar 

  • Zhang F (2006) Fan delta and braided delta sediments in Baiyinchagan depression. Acta Geoscientica Sninca 26(6):553–556

    Google Scholar 

  • Zhang C, Liu Z, Shi D et al (2000) Formed proceesing and evaluation disciplinarian of dan delta. Acta Sedimentol Sin 18(4):521–526

    Google Scholar 

  • Zhang C, Wu Z, Gao L et al (2007) Earthquake-induced soft-sediment deformation structures in the Mesoproterozoic Wumishan Formation, North China, and their geologic implications. Sci China, Ser D Earth Sci 50(3):350–358

    Article  Google Scholar 

  • Zhao X, Li Q, Jiang Z et al (2014) Organic geochemistry and reservoir characterization of the organic matter-rich calcilutite in the Shulu Sag, Bohai Bay Basin, North China. Mar Pet Geol 51:239–255

    Article  Google Scholar 

  • Zheng L, Jiang Z, Liu H et al (2015) Core evidence of paleoseismic events in Paleogene deposits of the Shulu Sag in the Bohai Bay Basin, east China, and their petroleum geologic significance. Sed Geol 328:33–54

    Article  Google Scholar 

  • Zhu X, Xin Q (1994) Important features of Lacustrine Fan. J Univ Petrol, China (Ed Nat Sci) 18(3):6–11

    Google Scholar 

  • Zou C, Zhao Z, Yang H et al (2009) Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentol Sin 27(6):1065–1075

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaixing Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Z. (2018). A Source-to-Sink Study of the Paleogene Shulu Sag: Characteristics and Depositional Dynamics of Its Deposits. In: Sedimentary Dynamics of Windfield-Source-Basin System. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7407-3_7

Download citation

Publish with us

Policies and ethics