Skip to main content

Biological Control of Insect Pests for Sustainable Agriculture

  • Chapter
  • First Online:
Advances in Soil Microbiology: Recent Trends and Future Prospects

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 4))

Abstract

Maintenance of agricultural productivity is currently based mainly on extraneous application of fertilizers and pesticides. However, indiscriminate use of agrochemicals for controlling the pests and diseases led to pollution of soil, water, and food sources, poisoning of nontarget beneficial insects, and development of insect population resistant to insecticides. To obviate the pollution problem and obtain higher yields in a sustainable manner, biological control of insect pests using specific antagonistic microorganisms is an effective alternate approach with minimum deleterious effects. Microorganisms have been obtained from the rhizosphere of different crop plants that inhibited insect pests by producing toxins, bacteriocins, siderophores, hydrolytic enzymes, and other secondary metabolites. Moreover, plant hormones salicylic acid, jasmonic acid, and ethylene orchestrate a complex transcriptional programming that eventually leads to pest-induced SAR (systemic acquired resistance) and ISR (induced systemic resistance) in many plant species. Microbial genes involved in the biosynthesis of secondary metabolites and enzymes have been cloned and transferred to other microorganisms and plants to enhance the suppression and killing of insects. The efficiency of these biocontrol products can be further increased through genetic improvement, manipulation of the soil and plant environment, using mixtures of biocontrol agents, and optimization of formulations and by integration of biocontrol agents with other alternative methods that provide additive and synergistic effects. Thus, the application of effective biocontrol agents may reduce the use of chemical insecticides and support sustainable agriculture in an eco-friendly manner in tandem with improved crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar W, Lord JC, Nechols JR, Loughin TM (2005) Efficacy of Beauveria bassiana for red flour beetle when applied with plant essential oils or in mineral oil and organosilicone carriers. J Econ Entomol 98:683–688. https://doi.org/10.1603/0022-0493-98.3.683

    Article  PubMed  Google Scholar 

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27:1437–1441. https://doi.org/10.1016/j.cropro.2008.07.003

    Article  Google Scholar 

  • Al Fazairy AA, Hassan FA (1988) Infection of termites by Spodoptera littoralis nuclear polyhedrosis virus. Insect Sci Appl 9:37–39. doi: https://doi.org/10.1017/S1742758400009991

  • Alexander B, Priest FG (1990) Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. J Gen Microbiol 136:367–376

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1998) United States Environmental Protection Agency, R.E.D. Facts, Bacillus thuringiensis, prevention, pesticides and toxic substances (751 W), EPA-738-F-98-001

    Google Scholar 

  • Arnold AE, Lewis LC. (2005) Ecology and evolution of fungal endophytes, and their roles against insects. Insect-fungal associations: ecology and evolution. Oxford University Press, New York 3:74–96

    Google Scholar 

  • Askary H, Yarmand H (2007) Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. Eur J Entomol 104:67

    Article  Google Scholar 

  • Askary H, Carriere Y, Belanger RR, Brodeur J. (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocont Sci Technol 8:23–32. doi: https://doi.org/10.1080/09583159830405

  • Azevedo JL, Maccheroni Jr W, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16

    Article  Google Scholar 

  • Bahar AA, Sezen K, DemirbaÄŸ Z, NalçacioÄŸlu R (2011) The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62:647–653. https://doi.org/10.1007/s13213-011-0301-y

    Article  CAS  Google Scholar 

  • Barloy F, Delècluse A, Nicolas L, Lecadet MM (1996) Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans sub-sp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol 178:3099–3105. https://doi.org/10.1128/jb.178.11.3099-3105.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto MR, Loguercio LL, Valicente FH, Paiva E (1999) Biological control insecticidal activity of culture supernatants from Bacillus thuringiensis Berliner strains against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) larvae. Ann Soc Entomol Brasil 28:675. https://doi.org/10.1590/S0301-80591999000400010

  • Beck D (1950) The toxicology of antimycin A. J Econ Entomol 43:105–107

    Article  CAS  Google Scholar 

  • Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196. https://doi.org/10.1146/annurev.phyto.37.1.175

    Article  CAS  PubMed  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467–472

    Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas C, Dey P, Satpathy S, Sarkar SK, Bera A, Mahapatra BS (2013) A simple method of DNA isolation from jute (Corchorus olitorius) seed suitable for PCR-based detection of the pathogen Macrophomina phaseolina (Tassi) Goid. Lett Appl Microbiol 56:105–110. https://doi.org/10.1111/lam.12020

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M, Rossi W (1986) Biogeography of fungal ectoparasites of termites. Mycotaxon 25:581–601

    Google Scholar 

  • Boets A, Arnaut G, Van Rie J, Damme N (2004) Toxins United States Patent No 6,706,860

    Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M, Palittapongarnpim P, Jaturapat A, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) A new antimycobacterial, 3b-acetoxy-15a, 22-dihydroxyhopane, from the insect pathogenic fungus Aschersonia tubulata. Planta Med 67:279–281

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172. https://doi.org/10.1146/annurev.phyto.45.062806.094354

    Article  CAS  PubMed  Google Scholar 

  • Bowen D (1995) Characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Ph.D. thesis. University of Wisconsin, Madison

    Google Scholar 

  • Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, Ffrench-Constant RH (2000) Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal tc toxin complexes. Insect Biochem Mol Biol 30:69–74. https://doi.org/10.1016/S0965-1748(99)00098-3

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brooks WM (1988) Entomogenous protozoa. Handbook of natural. pesticides 5:1–49

    Google Scholar 

  • Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema and their bacterial symbionts – lethal pathogens of insect. Nematology 2:31–42

    Article  Google Scholar 

  • Cabanillas E, Barker KR (1989) Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. J Nematol 21:115–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charles JF, Silva-filha MH, Nielsen-leroux C (2000) Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. In: Charles JF, Delécluse A, Nielsen-le Roux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publisher, London, pp 237–252

    Chapter  Google Scholar 

  • Chen JW, Liu BL, Tzeng YM (1999) Purification and quantification of destruxins A and B from Metarhizium anisopliae. J Chromatogr 830:115–125. https://doi.org/10.1016/S0021-9673(98)00849-8

  • Cheng Y, Liu T, Zhao Y, Geng W, Chen L, Liu J (2016) Evaluation of pathogenicity of the fungi Metarhizium anisopliae and Beauveria bassiana in hazelnut weevil (Curculio nucum L., Coleoptera, Curculionidae) larvae. Indian J Microbiol 56:405–410. https://doi.org/10.1007/s12088-016-0614-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connick WJ Jr, Osbrink WLA, Wright MS, Williams KS, Daigle DJ, Boykin WL, Lax AR (2001) Increased mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) exposed to eicosanoid biosynthesis inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae). Environ Entomol 30:449–455. doi: https://doi.org/10.1603/0046-225X-30.2.449

  • Cunningham JC (1995) Baculoviruses as microbial insecticides. In: Reuveni R (ed) Novel approaches to integrated pest management, Lewis, Boca Raton, pp 261–292

    Google Scholar 

  • Dababat AE, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776

    Article  Google Scholar 

  • Daisy S, Strobel G, Ezra D, Castillo UF, Baird G, Hess WM (2002) Muscodor vitigenus anam. sp. nov. an endophyte from Paullinia paulliniodes. Mycotaxon 84:39–50

    Google Scholar 

  • Darby C, Cosma CL, Thomas JH (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:202–207. https://doi.org/10.1073/pnas.96.26.15202

    Article  Google Scholar 

  • de Barjac H, Lemille F (1970) Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J Invert Pathol 15:139–140

    Article  Google Scholar 

  • de Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778. https://doi.org/10.1016/S0261-2194(01)00110-7

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore forming entomopathogenic bacteria. Annu Rev Gen 37:409–433. https://doi.org/10.1146/annurev.genet.37.110801.143042

    Article  CAS  Google Scholar 

  • de Oliveira FM, de Silva GM, van der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in Southern Brazil and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572. https://doi.org/10.1016/j.resmic.2010.05.008

    Article  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:414–764

    Google Scholar 

  • Desportes I (1963) Cycle evolutif d’une nouvelle Gregarine parasite de Termites: Diplocystis zootermopsidis sp. n. (Eugregarina Diplocystidae). Comtes Rendus Hebdom des Seances de Acad des Sci 257:4013–4015

    Google Scholar 

  • Devi K, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Google Scholar 

  • Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int J Appl Biol Pharm Technol 1:374–381

    Google Scholar 

  • Ekesi S, Maniania NK, Lwande W (2012) Susceptibility of the legume flower thrips to Metarhizium anisopliae on different varieties of cowpea. BioControl 45:79–95. https://doi.org/10.1023/A:1009927302916

    Article  Google Scholar 

  • Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104(7):2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Glauser G, Robert CAM (2012) Induced immunity against belowground insect herbivores – activation of defences in the absence of jasmonate burst. J Chem Ecol 38:629–640

    Article  CAS  PubMed  Google Scholar 

  • Fang J, XL X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen ZC (2011) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    Google Scholar 

  • FAO (2012) http://www.fao.org/news/story/en/item/131114/icode/

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson CM, Barton DM, Harper LA, Swaminathan J, Van Koten C, Hurst MRH (2012) Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand. Plant Prot 65:166–173

    Google Scholar 

  • Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M (2012) Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Intern J Agric Biol 14:291–295

    CAS  Google Scholar 

  • Fujii JK (1975) Effect of an entomogenous nematode Neoaplectana carpocapsae Weiser, on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with ecological and biological studies on C. formosanus. Ph.D. dissertation, University of Hawaii, Honolulu, Hawaii, USA. 163 pp

    Google Scholar 

  • Gadelhak GG, EL-Tarabily KA, AL-Kaabi FK (2005) Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int J Agric Biol 7:627–633

    Google Scholar 

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgis R, Poinar GO Jr, Wilson AP (1982) Susceptibility of damp-wood termites and soil and wood-dwelling termites to the entomogenous nematode Neoaplectana carpocapsae. IRCS. Med Sci 10:563

    Google Scholar 

  • Gibbs AJ, Gay FJ, Wetherly AH (1970) A possible paralysis virus of termites. Virology 40:1063–1065

    Article  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata lectin receptor kinase 1 suppresses the insect-mediated inhibition of induced defence responses during Manduca sexta herbivory. Plant Cell 23:3512–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glare TR, O’callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester

    Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378. https://doi.org/10.1016/S0734-9750(97)00004-9

    Article  CAS  PubMed  Google Scholar 

  • Goettel MS, Hajek AE (2001) Evaluation of non-target effects of pathogens used for management of arthropods. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Press, Wallingford, pp 81–97

    Google Scholar 

  • Gopalakrishnan S, Ranga Rao GV, Humayun P, Rameshwar Rao V, Alekhya G, Simi J, Deepthi K, Sree Vidya M, Srinivas V, Mamatha L, Rupela O (2011) Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr J Biotechnol 10:16667–16673. https://doi.org/10.5897/AJB11.2475

    Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2005) Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus say. Trop Biomed 22:1–3

    CAS  PubMed  Google Scholar 

  • Grace JK (1991) Termite-fungal associations and manipulations for termite control. In: Program and abstracts. 24th annual meeting, Society of Invertebrate Pathology, Northern Arizona University, Flagstaff, August 4–9, 1991. p 29

    Google Scholar 

  • Grace JK, Ewart D (1996) Recombinant cells of Pseudomonas fluorescens: a highly palatable encapsulation for delivery of genetically engineered toxins to subterranean termite (Isoptera: Rhinotermitidae). Lett Appl Microbiol 23:183–186

    Article  CAS  Google Scholar 

  • Grace JK, Zoberi MH (1992) Experimental evidence for transmission of Beauveria bassiana by Reticulitermes flavipes workers (Isoptera: Rhinotermitidae). Sociobiology 20:23–28

    Google Scholar 

  • Grace JK, Goodell BS, Jones WE, Chandhoke V, Jellison J (1992) Evidence for inhibition of termites (Isoptera: Rhinotermitidae) feeding by extracellular metabolites of a wood decay fungus. Proc Hawaiian Entomol Soc 31:249–252

    Google Scholar 

  • Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro BM (2010) Insecticidal activity of two proteases against Spodoptera Frugiperda larvae infected with recombinant baculoviruses. Virol J 7:143. https://doi.org/10.1186/1743-422X-7-143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunner HB, Kane J, Duan H (1994) Biological control of termites. PCT Patent Application ~WO94 04034

    Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011

    Article  Google Scholar 

  • Henry JE (1990) Control of insects by protozoa. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and disease. Alan R Liss Inc, New York, pp 161–176

    Google Scholar 

  • Herbert AK (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111. https://doi.org/10.1038/ja.2010.5

    Article  CAS  Google Scholar 

  • Hoell IA, Klemsdal SS, Vaaje-Kolstad G, Horn SJ, Eijsink VGH (2005) Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain. Biochim Biophys Acta 1748:180–190. https://doi.org/10.1016/j.bbapap.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T (2011) Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91:1463–1475. https://doi.org/10.1007/s00253-011-3468-z

    Article  CAS  PubMed  Google Scholar 

  • Huamei L, Qf S, Yongxia W, Wenjun L, Jie Z (2008) Insecticidal action of quinomycin A from Streptomyces sp. KN-0647 isolated from a forest soil. World J Microbiol Biotechnol 24:2243–2248. https://doi.org/10.1007/s11274-008-9736-0

    Article  CAS  Google Scholar 

  • Hurst MRH, Becher SA, Young SD, Nelson TL, Glare TR (2011) Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Intern J Syst Evol Microbiol 61:844–849. https://doi.org/10.1099/ijs.0.024406-0

    Article  CAS  Google Scholar 

  • Hussain AA, Mostafa SA, Ghazal SA, Ibrahim SY (2002) Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. Afr J Mycol Biotechnol 10:63–80

    CAS  Google Scholar 

  • Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept Ltd., Andover, pp 191–198

    Google Scholar 

  • Jafri RH, Ahmad M, Idrees K (1976) Microsporidian infection in the workers of termite, Microcerotermes championi. Pak J Zool 8:234–236

    Google Scholar 

  • Jegorov A, Kadlec J, Novak J, Matha V, Sedmera P, Triska J, Zahradnickova H (1989) Are the depsipeptides of Beauveria brongniartii involved in the entomopathogenic process? In: Jegorov A, Matha V (eds) Proceedings of the international conference on biopesticides, theory and practice. Ceske Budejovice, Czechoslovakia, pp 71–81

    Google Scholar 

  • Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and above-ground insect herbivory. New Phytol 210:413–418. https://doi.org/10.1111/nph.13807

    Article  PubMed  Google Scholar 

  • Kaijiang L, Roberts DW (1986) The production of destruxins by the entomogenic fungus, Metarhizium anisopliae var. major. J Invertebr Pathol 47:120–122. https://doi.org/10.1016/0022-2011(86)90170-9

    Article  CAS  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. https://doi.org/10.1146/annurev.en.38.010193.001145

    Article  Google Scholar 

  • Kaya HK, Bedding RA, Akhurst RJ (1993) An overview of insect-parasitic and entomopathogenic nematodes. In: Bedding RA, Akhurst R, Kaya H (eds) Nematodes and the biological control of insect pest. CSIRO, East Melbourne, Australia, pp 1–10

    Google Scholar 

  • Keller S (2000) Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull OILB/SROP 23:67–71

    Google Scholar 

  • Khan KI, Fazal QA, Jafri RH, Ahmad MU (1977) Susceptibility of various species of termites to a pathogen, Serratia marcescens. Pak J Sci Res 29:46–47

    Google Scholar 

  • Khan KI, Fazal QA, Jafri RH (1978) Development of Bacillus thuringiensis in a termite, Heterotermes indicola (Wassman) [sic]. Pak J Sci Res 30:117–119

    Google Scholar 

  • Khan KI, Jafri RH, Ahmad M (1985) The pathogenicity and development of Bacillus thuringiensis in termites. Pak J Zool 17:201–209

    Google Scholar 

  • Khan KI, Jafri RH, Ahmad M, Khan KMS (1992) The pathogenicity of Pseudomonas aeruginosa against termites. Pak J Zool 24:243–245

    Google Scholar 

  • Kido GS, Spyhalski E (1950) Antimycin A, an antibiotic with insecticidal and miticidal properties. Science 112:172–173

    Article  PubMed  Google Scholar 

  • Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002) Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J Nat Inst Agri Sci Technol:7–14

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. BioControl 40:327–332. https://doi.org/10.1016/j.biocontrol.2006.12.002

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. BioControl 45:404–409. https://doi.org/10.1016/j.biocontrol.2008.02.003

    Google Scholar 

  • Klein MG (1988) Pest management of soil-inhibiting insects with microorganisms. Agric Ecosyst Environ 24:337–349

    Article  Google Scholar 

  • Klingen I, Eilenberg J, Meadow R (1998) Insect pathogenic fungi from northern Norway baited on Delia floralis (Diptera, Anthomyiidae) and Galleria mellonella (Lepidoptera, Pyralidae). IOBC wprs Bull 21:121–124

    Google Scholar 

  • Konstantopoulou MA, Mazomenos BE (2005) Evaluation of Beauveria bassiana and B. brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae and Ceratitis capitata. BioControl 50:293–305. https://doi.org/10.1007/s10526-004-0458-4

    Article  Google Scholar 

  • Krasnoff SB, Gibson DM (1996) New destruxins from the entomopathogenic fungus, Aschersonia sp. J Natur Prod 59:485–489. https://doi.org/10.1021/np9601216

    Article  CAS  Google Scholar 

  • Kumari V, Singh NP (2009) Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage. J Biopest 2:84–86

    CAS  Google Scholar 

  • Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294. https://doi.org/10.1007/s002840110219

    CAS  PubMed  Google Scholar 

  • Lacey LA, Goettel M (1995) Current developments in microbial control of insects, pests and prospects for the early 21st century. Entomophaga 40:3–27. https://doi.org/10.1007/BF02372677

    Article  Google Scholar 

  • Lacey LA, Neven LG (2006) The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 91:195–198. https://doi.org/10.1016/j.jip.2006.01.002

    Article  PubMed  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Laid B, Kamel K, Mouloud G, Manel S, Walid S, Amar B, Hamenna B, Faiçal B (2016) Effects of plant growth promoting rhizobacteria (PGPR) on in vitro bread wheat (Triticum aestivum L.) growth parameters and biological control mechanisms. Adv Microbiol 6:677–690. https://doi.org/10.4236/aim.2016.69067

    Article  Google Scholar 

  • Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG (2003) The Drosophila melanogaster toll pathway participates in resistance to infection by the Gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71:4059–4066. https://doi.org/10.1128/IAI.71.7.4059-4066.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehr P (2010) Biopesticides: the global market, report code CHM029B, BCC Research

    Google Scholar 

  • Leong KLH (1966) Infection of the Formosan subterranean termite, Coptotermes formosanus Shiraki, by the fungus Metarhizium anisopliae (Metsch.) Sorok. M. Sc. thesis, University of Hawaii, Honolulu

    Google Scholar 

  • Li Z, Li CR, Huang B, Meizhen MZ (2001) Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill. An important entomogenous fungus. Chin Sci Bull 46:751–753. https://doi.org/10.1007/BF03187215

  • Li Z, Wang Z, Peng G, Yin Y, Zhao H, Cao Y, Xia Y (2007) Regulation of extracellular acid phosphatase biosynthesis by culture conditions in entomopathogenic fungus Metarhizium anisopliae strain. Ann Microbiol 57:565–570. https://doi.org/10.1007/BF03175356

    Article  CAS  Google Scholar 

  • Li X, Zhang Y, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil Soils 51:935–946. https://doi.org/10.1007/s00374-015-1038-8

    Article  CAS  Google Scholar 

  • Liu F, Yang W, Ruan L, Sun M (2013) A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 63:1131–1135. https://doi.org/10.1007/s13213-012-0570-0

    Article  CAS  Google Scholar 

  • Lu J, Robert CAM, Riemann M, Cosme M, Mene-Saffrane L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167:1100–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysenko O, Kucera M (1971) Microorganisms as sources of new insecticidal chemicals; toxins. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London/New York, pp 205–227

    Google Scholar 

  • Maniania NK, Ekesi S, Songa JM (2002) Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Int J Trop Insect Sci 22:41–46. https://doi.org/10.1017/S1742758400015046

    Article  Google Scholar 

  • Martin PAW, Shropshire ADS, Gundersen-Rindal DE, Blackburn MB (2007) Chromobacterium subtsugae sp. nov. and use for control of insect pests. US Patent Application Publication, 2007/0172463 A1

    Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:177–188. https://doi.org/10.1007/s11274-016-2131-3

    Article  PubMed  CAS  Google Scholar 

  • Mazet I, Hung SY, Boucias DG (1995) Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. J Invertbr Pathol 64:200–207. https://doi.org/10.1099/13500872-141-6-1343

    Google Scholar 

  • Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect modulation responses to bacterial infections. Proc Natl Acad Sci U S A 91:2418–2422

    Google Scholar 

  • Milner RJ, Staples JA (1996) Biological control of termites: results and experiences within a CSIRO project in Australia. Biocontrol Sci Tech 6:3–9

    Google Scholar 

  • Milner RJ, Staples JA, Lenz M (1996) Options for termite management using the insect pathogenic fungus Metarhizium anisopliae. International group on wood preservation. Document No. IRG/WP9610142, pp 1–5

    Google Scholar 

  • Milner RJ, Staples JA, Lutton GG (1998) The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biol Control 11:240–247. https://doi.org/10.1006/bcon.1997.0574

    Article  Google Scholar 

  • Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069. https://doi.org/10.1128/AEM.67.5.2062-2069.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289. https://doi.org/10.1146/annurev.ento.44.1.257

    Article  CAS  PubMed  Google Scholar 

  • Mostakim M, Mohammed IH, Ibnsouda SK (2012) Biocontrol potential of a Pseudomonas aeruginosa strain against Bactrocera oleae. Afr J Microbiol Res 6:5472–5478. https://doi.org/10.5897/AJMR11.1598

    Google Scholar 

  • Muratoglu H, Kati H, Demibag Z (2009) High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). Afr J Biotechnol 8:7111–7115

    Google Scholar 

  • Muratoglu H, Nacacioglu R, Demibag Z (2010) Transcriptional and structural analyses of Amsacta moorei entomopoxvirus protein kinase gene (AMV197, pk). Ann Microbiol 60:523–530. https://doi.org/10.1007/s13213-010-0082-8

    Article  CAS  Google Scholar 

  • Murty MG, Srinivas G, Sekar V (1994) Production of mosquitocidal exotoxin by a Pseudomonas fluorescens strain. J Invert Pathol 64:68–70. https://doi.org/10.1006/jipa.1994.1071

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. https://doi.org/10.1146/annurev.bi.50.070181.003435

    Article  CAS  PubMed  Google Scholar 

  • Nickle WR, Welch HE (1984) History, development and importance of insect nematology. In: Nickle WR (ed) Plant and insect nematodes. Marcel Dekker Inc, New York, pp 627–653

    Google Scholar 

  • Nicolas L, Hamon S, Frachon E, Sebald M, De Barjac H (1990) Partial inactivation of the mosquitocidal activity of Clostridium bifermentans serovar malaysia by extracellular proteinases. Appl Microbiol Biotechnol 34:36–41. https://doi.org/10.1007/BF00170920

    Article  CAS  Google Scholar 

  • Nishiwaki H, Nakashima K, Ishida C, Kawamura T, Matsuda K (2007) Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Appl Environ Microbiol 73:3404–3411. https://doi.org/10.1128/AEM.00021-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez E, Iannacone J, Gomez H (2008) Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis 1846) (Hemiptera: Aleyrodidae). Chil J Agric Res 68:21–30. https://doi.org/10.4067/S0718-58392008000100003

    Google Scholar 

  • Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osbrink LAW, Williams KS, Connick WJ Jr, Wright MS, Lax AR (2001) Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environ Entomol 76:443–448

    Google Scholar 

  • Ouedraogo RM, Cusson M, Goettel MS, Brodeur J (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var. acridum. J Invert Pathol 82:103–109. https://doi.org/10.1016/S0022-2011(02)00185-4

    Article  Google Scholar 

  • Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp (74):e50360. doi: https://doi.org/10.3791/50360

  • Payne CC (1982) Insect viruses as control agents. Parasitology 84:35–77. https://doi.org/10.1017/S0031182000053609

    Article  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281. https://doi.org/10.1128/MMBR.00034-06

  • Pitterna T, Cassayre J, Huter O (2009) New ventures in the chemistry of Avermectins. Bioorg Med Chem 17:4085–4095. https://doi.org/10.1016/j.bmc.2008.12.069

    Article  CAS  PubMed  Google Scholar 

  • Popham HJR, Nusawardani T, Bonning BC (2016) Introduction to the use of baculoviruses as biological insecticides. Methods Mol Biol 1350:383–392. https://doi.org/10.1007/978-1-4939-3043-2-19

    Article  CAS  PubMed  Google Scholar 

  • Popiel I, Hominick WH (1992) Nematodes as biological control agents: Part II. Adv Parasitol 31:381–433. https://doi.org/10.1016/S0065-308X(08)60025-1

    Article  Google Scholar 

  • Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748–757. http://www.scielo.org.co/pdf/rudca/v13n2/v13n2a09.pdf

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Intern J Biol Sci 4:330–337. https://doi.org/10.7150/ijbs.4.330

    Article  CAS  Google Scholar 

  • Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR, Prinsen MJ, Corbin DR, Tran M, Sammons RD, Stonard RJ (1993) Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem Biophys Res Commun 196:1406–1413. https://doi.org/10.1006/bbrc.1993.2409

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Moraga E, Alain VE (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Moraga E, Carrasco-diaz JA, Santiago-Alvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452

    Article  CAS  Google Scholar 

  • Rakshiya YS, Verma MK, Sindhu SS (2016) Efficacy of antagonistic soil bacteria in management of subterranean termites (Isoptera). Res Environ Life Sci 9:949–955

    Google Scholar 

  • Rath AC, Tidbury CA (1996) Susceptibility of Coptotermes acinaciformis (Isoptera: Rhinotermitidae) and Nasutitermes exitiosus (Isoptera: Termitidae) to two commercial isolates of Metarhizium anisopliae. Sociobiology 28:67–72

    Google Scholar 

  • Revathi N, Ravikumar G, Kalaiselvi M, Gomathi D, Uma C (2011) Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. J Plant Pathol Microbiol 2:114. https://doi.org/10.4172/2157-7471.1000114

    Article  Google Scholar 

  • Rivers DB, Vann CN, Zimmack HL, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invert Pathol 58:444–447. https://doi.org/10.1016/0022-2011(91)90191-R

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

  • Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu L, Delrio G, Ellar DJ, Floris I, Paglietti B, Rubino S, Satta A (2006) Lethal and sub-lethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomol Exp Appl 118:137–144. https://doi.org/10.1111/j.1570-7458.2006.00370.x

  • Ruiu L, Satta A, Floris I (2013) Emerging entomopathogenic bacteria for insect pest management. Bull Insectol 66:181–186

    Google Scholar 

  • Sabaratnam S, Traquair JA (2015) Mechanism of antagonism by Streptomyces grisecarneous (strain Di944) against fungal pathogens of green house-grown tomato transplants. Can J Plant Pathol 37:197–211. https://doi.org/10.1080/07060661.2015.1039062

    Article  CAS  Google Scholar 

  • Saikia R, Gogoi DK, Mazumder S, Yadav A, Sarma RK, Bora TC, Gogoi BK (2011) Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol Res 166:216–225. https://doi.org/10.1016/j.micres.2010.03.002. Epub 2010 Jul 13

    Article  CAS  PubMed  Google Scholar 

  • Sandhu SS, Rajak RC, Hasija SK (2000) Potential of entomopathogens for the biological management of medically important pest: progress and prospect. In: Glimpses in plant sciences, pp 110–117

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29. https://doi.org/10.1016/j.micres.2013.08.009

  • Seleena P, Lee HL (1994) Insecticidal activity of a Malaysian isolate of Aspergillus niger. Asian J. Sci Technol Dev 11:47–53

    Google Scholar 

  • Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011) Increase of the Bacillus thuringiensis secreted toxicity against lepidopteran larvae by homologous expression of the vip3LB gene during sporulation stage. Curr Microbiol 63:289–294

    Google Scholar 

  • Seo JH, Yeo JS, Cha HJ (2005) Baculoviral Polyhedrin- Bacillus thuringiensis toxin fusion protein: a protein-based bio-insecticide expressed in Escherichia coli. Biotechnol Bioeng 92:166–172

    Article  CAS  PubMed  Google Scholar 

  • Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Alun J, Morgan W (2006) Identification, typing and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907. https://doi.org/10.1128/AEM.00217-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevim A, Demirbag Z, Demirturk I (2010) A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk J Agric For 34:333–342

    CAS  Google Scholar 

  • Sezen K, Demir I, Demirbag Z (2005) Investigations on bacteria as a potential biological control agent of summer chafer Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43:463–468

    CAS  PubMed  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microbiol Technol 40:961–968

    Article  CAS  Google Scholar 

  • Sharaf EF (2005) A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Pol J Microbiol 54:145–151

    PubMed  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Kumari K (2014) Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Nagpal R, Kumar A, Singh R (eds) Microbes in the service of mankind: tiny bugs with huge impact. JBC Press, New Delhi, pp 32–94

    Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J 1:135–148

    Article  Google Scholar 

  • Singer S (1996) The utility of morphological group II Bacillus. Adv Appl Microbiol 42:219–261

    Google Scholar 

  • Singh Y (2007) Isolation and identification of bacteria having pathogenic interactions with termites (Isoptera). M.Sc. thesis submitted to CCS Haryana Agricultural University, Hisar, p 104

    Google Scholar 

  • Smith KM (1967) Insect virology. Academic, New York, p 256

    Google Scholar 

  • Smythe RV, Coppel HC (1965) The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J Invertebr Pathol 7:423–426

    Article  Google Scholar 

  • Snyder D, Meyer J, Zimmerman AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol 150:345–351

    Article  CAS  PubMed  Google Scholar 

  • Srivastava JN, Prakash S (2001) Chrysosporium tropicum efficacy against Anopheles stephensi larvae in the laboratory. J Am Mosquito Contr Assoc 17:127–130

    Google Scholar 

  • Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci U S A 88:1064–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Tech 10:717–735

    Article  Google Scholar 

  • Sun J, Fuxa JR, Henderson G (2002) Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus and in vitro. J Invertebr Pathol 81:78–85

    Article  PubMed  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biol Control 54:663–669

    Google Scholar 

  • Thakur R, Sandhu SS (2010) Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of central India. Indian J Microbiol 50:89–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Trudeau D (1989) Selection of entomophilic nematodes for control of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Master’s thesis, University of Toronto, Toronto, Ontario, Canada, 93 pp

    Google Scholar 

  • Tuan SJ, Hou RF, Lee CF, Chao YC (2007) High level production of polyhedral in a scorpion toxin containing recombinant baculovirus for better control of insect pests. Bot Stud 48:273–281

    Google Scholar 

  • van Rie J, Jansens S, Hofte H, Degheele D, van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins. Importance of specific receptors on the brush-border membrane of the mid-gut of target insects. Eur J Biochem 186:239–247

    Article  PubMed  Google Scholar 

  • Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58:636–641

    Article  Google Scholar 

  • Vega FE, Kaya HK (2012) Insect pathology. Academic, San Diego

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46–54

    Google Scholar 

  • Vimala Devi PS (2001) Prospects of using Nomuraea rileyi for the management of crop pests. In: Rabindra RJ, Kennedy JS, Sainath N, Rajsekaran B, Srinivasan MR (eds) Microbial control of crop pests. Graphic Skill Publisher, Coimbatore, pp 80–94

    Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnol 24:673–679

    Article  CAS  Google Scholar 

  • Vu TT (2005) Modes of action of non-pathogenic Fusarium oxysporum endophytes for bio-enhancement of banana toward Radopholus similis. Ph.D. thesis, University of Bonn, Germany

    Google Scholar 

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp). Biol Control 74:82–88

    Article  Google Scholar 

  • Wells JD, Fuxa JR, Henderson G (1995) Virulence of four fungal pathogens to Coptotermes formosanus (Isoptera: Rhinotermitidae). J Entomol Sci 30:208–215

    Article  Google Scholar 

  • Wright MS, Connick WJ, Jackson MA (2003) Use of Paecilomyces sp. as pathogenic against termites. US Patent 6660291

    Google Scholar 

  • Wright MS, Raina AK, Lax AR (2005) A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. J Econ Entomol 98:1451–1458

    Article  PubMed  Google Scholar 

  • Yankouskaya A (2009) Application of biological insecticide Pecilomicine-B for greenhouse pest control. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture SodininkystÄ— Ir DaržininkystÄ— 28:249–258

    Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Gouge DH, Baker P (2006) Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). J Econ Entomol 99:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Kett Appl Microbiol 42:109–114. https://doi.org/10.1111/j.1472-765X.2005.01817.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyavir S. Sindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sindhu, S.S., Sehrawat, A., Sharma, R., Khandelwal, A. (2017). Biological Control of Insect Pests for Sustainable Agriculture. In: Adhya, T., Mishra, B., Annapurna, K., Verma, D., Kumar, U. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-7380-9_9

Download citation

Publish with us

Policies and ethics