Skip to main content

Biological Control as a Tool for Eco-friendly Management of Plant Pathogens

Part of the Microorganisms for Sustainability book series (MICRO,volume 4)

Abstract

Crop protection is pivotal to maintain abundant production of high quality. Over the past 100 years, use of chemical fertilizers and pathocides and good agronomical practices enabled growers to maintain improved crop productivity. However, extensive use of chemicals during the last few decades in controlling pests and diseases resulted in negative impacts on the environment, producing inferior quality and harming consumer health. In recent times, diverse approaches are being used to manage and/or mitigate a variety of pathogens for control of plant diseases. Biological control is the alternative approach for disease management that is eco-friendly and reduces the amount of human contact with harmful chemicals and their residues. A variety of biocontrol agents including fungi and bacteria have been identified but require effective adoption and further development of such agents. This requires a better understanding of the intricate interactions among the pathogen, plants and environment towards sustainable agriculture. Beyond the field assessment, the analysis of microbial communities with culture-independent molecular techniques including sequencing technologies and genomics information has begun a new era of plant disease management.

Keywords

  • Biocontrol agent
  • Plant-pathogen interaction
  • Eco-friendly plant disease management
  • Sustainable agriculture
  • Socio-economic impact

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7380-9_8
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-7380-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  CrossRef  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-hamdani AM, Lutchmeah RS, Cooke RC (1983) Biological control of Pythium ultimum-induced damping-off by treating cress seed with the mycoparasite Pythium oligandrum. Plant Pathol 32:449–454

    CrossRef  Google Scholar 

  • Alkhail AA (2005) Antifungal activity of some extracts against some plant pathogenic fungi. Pak J Biol Sci 8:413–417

    CrossRef  Google Scholar 

  • Aziz NH, El-Fouly MZ, El-Essawy AA, Khalaf MA (1997) Influence of bean seedling root exudates on the rhizosphere colonization by Trichoderma lignorum for the control of Rhizoctonia solani. Bot Bull Acad Sin 38:33–39

    Google Scholar 

  • Baltruschat H, Schoenbeck F (1975) The influence of endotrophic mycorrhiza on the infestation on tobacco by Thielaviopsis basicola. Phytopath Z 84:172–188

    CAS  CrossRef  Google Scholar 

  • Bankole SA, Adebanjo A (1996) A Biocontrol of brown blotch of cowpea caused by Colletotrichum truncatum with Trichoderma viride. Crop Prot 15:633–636

    CrossRef  Google Scholar 

  • Barrows-Broaddus J, Kerr TJ (1981) Inhibition of Fusarium moniliforme var. subglutinans, the causal agent of pine pitch canker, by the soil bacterium Arthrobacter sp. Can J Microbiol 27:20–27

    CAS  PubMed  CrossRef  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    CAS  CrossRef  Google Scholar 

  • Batta YA (2004) Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. Int J Food Microbiol 96:281–288

    CAS  PubMed  CrossRef  Google Scholar 

  • Benhamou N, Rey P, Cherif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87:108–122

    CAS  PubMed  CrossRef  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg Ben JJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. Sp. radicis-lycopersici. Mol Plant-Microbe Interact 16:983–993

    CAS  PubMed  CrossRef  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

    CrossRef  Google Scholar 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot 24:939–950

    CrossRef  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospectus for the future. Soil Biol Biochem 27:683–687

    CAS  CrossRef  Google Scholar 

  • Budi SW, van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-born pathogenic fungi. Appl Soil Ecol 15:191–199

    CrossRef  Google Scholar 

  • Buyer JS, Sikora LJ, Chaney RL (1989) A new growth medium for the study of siderophore mediated interactions. Biol Fertil Soils 8:97–101

    CrossRef  Google Scholar 

  • Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species: a study of the production of extracellular metabolites by Trichoderma species. Mycopathologia 137:115–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hortic Sci 26:1163–1165

    Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    CAS  PubMed  CrossRef  Google Scholar 

  • Castoria R, De Curtis F, Lima G, De Cicco V (1997) β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biol Technol 12:293–300

    CAS  CrossRef  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    CAS  CrossRef  Google Scholar 

  • Cazorla FM, Duckett SB, Bergström ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant-Microbe Interact 19:418–428

    CAS  PubMed  CrossRef  Google Scholar 

  • Chan Z, Tian S (2005) Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biol Technol 36:215–223

    CAS  CrossRef  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chernin LS, Dela Fuente L, Sobolev V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson JP, Payne T, Mead A, Whipps JM (2002) Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. Plant Pathol 51:735–745

    CrossRef  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    CrossRef  Google Scholar 

  • Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34:467–476

    CAS  CrossRef  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soilborne pathogens: a review. Fungal Biol Rev 28:97–125

    CrossRef  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JJB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Biol Control 93:626–632

    Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103:18450–18457

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Droby S, Chalutz E, Hofstein R, Wilson CL, Wisniewski ME, Fridlender B, Cohen L, Weiss B, Daus A (1993) Pilot testing of Pichia guilliermondii: a biocontrol agent of postharvest diseases of citrus fruit. Biol Control 3:47–52

    CrossRef  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, de Bruijin FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    CAS  PubMed  CrossRef  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and iderophore- producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Ecol Epidemiol 75:1047–1052

    CAS  Google Scholar 

  • Elson MK, Schisler DA, Bothast RJ (1997) Selection of microorganisms for biological control of silver scurf (Helminthosporium solani) of potato tubers. Plant Dis 81:647–652

    CrossRef  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    CrossRef  Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222

    CAS  CrossRef  Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K, KurtboÈ ke ID (1996a) Microbiological differences between limited and unlimed soils and their relationship with cavity spot disease of carrots (Daucus carota L.) caused by Pythium coloratum in Western Australia. Plant Soil 183:279–290

    CAS  CrossRef  Google Scholar 

  • El-Tarabily KA, Sykes ML, Kurtböke ID, Hardy GESJ, Barbosa AM, Dekker RFH (1996b) Synergistic effects of a cellulase-producing Micromonospora carbonaceae and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Bot 74:618e624

    CrossRef  Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K, Hussein AM, KurtboÈ ke ID (1997) The potential for the biological control of cavity spot disease of carrots caused by Pythium coloratum by streptomycete and non-streptomycete actinomycetes in Western Australia. New Phytol 137:495–507

    CrossRef  Google Scholar 

  • El-Tarabily KA, Soliman NH, Nassar AH, Al-Hassani HA, Sivasithamparam K, Mc Kenna F, Hardy GE (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:576–583

    CrossRef  Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351

    Google Scholar 

  • Filonow AB, Lockwood JL (1985) Evaluation of several actinomycetes and fungus Hyphochytrium catenoides as biocontrol agents for Phytophtora root rot of soybean. Plant Dis 69:1033–1036

    Google Scholar 

  • Fletcher JT (1978) The use of avirulent strains to protect plants against the effects of virulent strains. Ann Appl Biol 89:110–114

    CrossRef  Google Scholar 

  • Folimonova SY (2013) Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol 4:76

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Folman LB, Postma J, Van Veen JA (2003) Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits. Microb Ecol 45:72–87

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    CAS  PubMed  CrossRef  Google Scholar 

  • Ghisalberti EL, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020

    CAS  CrossRef  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin SA (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    CAS  PubMed  CrossRef  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidhya MS, Deepthi K, Rupela O (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of sorghum caused by Macrophomina phaseolina. World J Microbiol Biotechnol 27:1313–1321

    CAS  PubMed  CrossRef  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011b) Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    CAS  CrossRef  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Vijayabharathi R, Rupela O (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    CAS  PubMed  CrossRef  Google Scholar 

  • Haas K, Keel C, Laville J, Maurhofer M, Oberhansli TF, Schnider U, Voisard C, Wuthrich B, Defago G (1991) Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppression of root diseases. In: Hennecks H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer Academic Publishers, Interlaken, pp 450–456

    CrossRef  Google Scholar 

  • Hanson LE (2000) Reduction of Verticillium wilt symptoms in cotton following seed treatment with Trichoderma virens. J Cotton Sci 4:224–231

    Google Scholar 

  • Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velazquez-del Valle MG, Hernández-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.) Appl Soil Ecol 39:180–186

    CrossRef  Google Scholar 

  • Heungens K, Parke J (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.) Appl Environ Microbiol 66:5192–5200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    CrossRef  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    CAS  PubMed  CrossRef  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    CAS  CrossRef  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre- emergence damping-off by the bacterium. Phytopathology 78:1075–1078

    CAS  CrossRef  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant-Microbe Interact 4:393–399

    CAS  CrossRef  Google Scholar 

  • Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81:821–830

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hussin NM, Muse R, Ahmad S, Ramli J, Mahmood M, Sulaiman MR, Shukor MYA, Rahman MFA, Aziz KNK (2009) Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). Afr J Biotechnol 8:2835–2842

    CAS  Google Scholar 

  • Ikeda S, Shimizu A, Shimizu M, Takahashi H, Takenaka S (2012) Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol Control 60:297–304

    CrossRef  Google Scholar 

  • Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacteria. Soil Biol Biochem 23:973–978

    CAS  CrossRef  Google Scholar 

  • Iqbal SH, Qureshi KS, Ahmed S (1977) Influence of VA mycorrhiza on damping-off caused by Rhizoctonia solani in Brassica napus. Biologia 23:197–208

    Google Scholar 

  • James RD, William WM (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 14:611

    CrossRef  CAS  Google Scholar 

  • Jiang Z, Guo Y, Li S, Qi H, Guo J (2006) Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol Control 36:216–223

    CrossRef  Google Scholar 

  • Kabaluk T, Gazdik K (2007) Directory of microbial pesticides for agricultural crops in OECD countries. Agriculture and Agri-Food Canada, Ottawa

    Google Scholar 

  • Kamilova F, Leveau JHJ, Lugtenberg BJJ (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603

    CAS  PubMed  CrossRef  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2008) Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362

    CAS  CrossRef  Google Scholar 

  • Khan NI, Filonow AB, Singleton LL (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Tech 7:11–22

    CrossRef  Google Scholar 

  • Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–286

    CrossRef  Google Scholar 

  • Kiewnick S (2007) Practicalities of developing and registering microbial biological control agents, CAB Reviews: perspectives in agriculture, veterinary science, nutrition and natural resources No. 013, CABI Publishing. http://www.cababstractsplus.org/cabreviews. Accessed July 2017

  • Kiss L, Russell JC, Szentivanyi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Tech 14:635–651

    CrossRef  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  CrossRef  Google Scholar 

  • Konstantinidou-Doltsinis S, Markellou E, Petsikos-Panayotarou N, Siranidou E, Kalamarakis AE, Schmitt A, Ernst A, Seddon B, Belanger RR, Dik AJ, Shtienberg D (2002) Biological control of fungal and bacterial plant pathogens. In: Elad Y, Kohl J (eds) Combinations of biocontrol agents and Milsana(R) against powdery mildew and grey mould in cucumber in Greece and the Netherlands, vol 25. IOBC-WPRS Working Group, Kusadasi, pp 171–174

    Google Scholar 

  • Koths JS, Gunner HR (1967) Establishment of a rhizosphere microflora on carnation as a means of plant protection in steamed greenhouse soils. Am Soc Horticult Sci 91:617–626

    Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatus and Sclerotium rolfsii in peanut. Can J Bot 67:2349–2357

    CrossRef  Google Scholar 

  • Kumar R, Kumar S, Pankaj VP, Tarafdar A, Biswas K (2016a) Microbes in plant endosphere: pathogenesis and disease antagonism. In: Mitra R, Barman A (eds) Plant pathogen interaction: recent trends. Sharma publications and distributors, New Delhi, pp 113–130

    Google Scholar 

  • Kumar R, Pankaj VP, Tarafdar A, Biswas K, Kumar S (2016b) Soil Microbes and their interaction with plants. In: Mitra R, Barman A (eds) Plant pathogen interaction: recent trends. Sharma publications and distributors, New Delhi, pp 1–46

    Google Scholar 

  • Kurek E, Jaroszuk-Sciseł J (2003) Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol Control 26:48–56

    CrossRef  Google Scholar 

  • Lecoq H, Lemaire JM (1991) Control of Zucchini yellow mosaic virus in squash by cross protection. Plant Dis 75:208–211

    CrossRef  Google Scholar 

  • Lehr P (2010) Biopesticides: the global market, Report code CHM029B. BCC Research, London

    Google Scholar 

  • Lherminier J, Benhamou N, Larrue J, Milat ML, Boudon-Padieu E, Nicole M, Blein JP (2003) Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or Phytoplasma. Phytopathology 93:1308–1319

    CAS  PubMed  CrossRef  Google Scholar 

  • Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY (2008) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98:695–701

    CAS  PubMed  CrossRef  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou BG, Wang AY, Lin C, Xu T, Zheng XD (2011) Enhancement of defense responses by oligandrin against Botrytis cinerea in tomatoes. Afr J Biotechnol 10:442–449

    CrossRef  Google Scholar 

  • Madsen AM, de Neergaard E (1999) Interactions between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur J Plant Pathol 105:761–768

    CrossRef  Google Scholar 

  • Marco JLD, Valadares-Inglis MC, Felix CR (2003) Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. Braz J Microbiol 34:33–38

    CrossRef  Google Scholar 

  • McQuilken MP, Powell HG, Budge SP, Whipps JM (1998) Effect of storage on the survival and biocontrol activity of Pythium oligandrum in pelleted sugar beet seed. Biocontrol Sci Tech 8:237–241

    CrossRef  Google Scholar 

  • Mukherjee PK, Raghu K (1997) Trichoderma sp. as a microbial suppressive agent of Sclerotium rolfsii on vegetables. World J Microbiol Biotechnol 13:497–499

    CrossRef  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller G, Matzanke BF, Raymond KN (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid and enantio- rhodotorulic acid. J Bacteriol 160:313–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis 84:779–784

    CrossRef  Google Scholar 

  • Naureen Z, Price AH, Hafeez FY, Roberts MR (2009) Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot 28:1052–1060

    CrossRef  Google Scholar 

  • Niranjan Raj S, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    CrossRef  Google Scholar 

  • Padaria JC, Tarafdar A, Raipuria R, Lone SA, Gahlot P, Shakil NA, Kumar J (2016) Identification of phenazine-1-carboxylic acid gene (phc CD)from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani. J Basic Microbiol 56:1–10

    CrossRef  CAS  Google Scholar 

  • Park S, Bae D, Lee J, Chung S, Kim H (1999) Integration of biological and chemical methods for the control of pepper gray mold rot under commercial greenhouse conditions. Plant Pathol J 15:162–167

    Google Scholar 

  • Perello A, Monaco C, Simon MR, Sisterna M, Bello Dal G (2003) Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Prot 22:1099–1106

    CrossRef  Google Scholar 

  • Picard K, Ponchet M, Blein JP, Rey P, Tirilly Y, Benhamou N (2000) Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol 124:379–395

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pleban S, Chernin L, Che I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    CAS  PubMed  CrossRef  Google Scholar 

  • Prasad RD, Rangeshwaran R (2000) Effect of soil application of a granular formulation of Trichoderma harzianum on seed rot and damping-off of chickpea incited by Rhizoctonia solani, saprophytic growth of the pathogen and bioagent proliferation. J Mycol Plant Pathol 30:216–220

    Google Scholar 

  • Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP (2002) Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot 21:293–297

    CrossRef  Google Scholar 

  • Pratt JE, Gibbs JN, Webber JF (1999) Registration of Phlebiopsis gigantea as a forest biocontrol agent in the UK: recent experience. Biocontrol Sci Tech 9:113–118

    CrossRef  Google Scholar 

  • Radjacommare R, Kandan A, Nandakumar R, Samiyappan R (2004) Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. J Phytopathol 152:365–370

    CAS  CrossRef  Google Scholar 

  • Rekanovic E, Milijasevic S, Todorovic B, Potocnik I (2007) Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica 35:436–441

    CAS  CrossRef  Google Scholar 

  • Roshan K, Tarafdar A, Saurav K, Ali S, Lone SA, Pattnaik S, Tyagi A, Biswas K, Mir ZA (2013) Isolation and screening of bioactive compound from actinomycetes isolated from salt pan of Marakanam district of the state Tamil Nadu, India. Elixir BioTechnol 61:16826–16831

    Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54:273

    CrossRef  Google Scholar 

  • Sharma M, Tarafdar A, Ghosh R (2016) Use of genomic approaches in understanding the role of actinomycetes as PGP in grain legumes. In: Gopalkrisnan A, Sathya A, VijayaBharthi R (eds) Plant growth-promoting actinomycetes: a new avenue for enhancing the productivity and soil fertility of grain legumes. Springer, New York, pp 249–262

    CrossRef  Google Scholar 

  • Shobha G, Kumudini BS (2012) Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. Int J Appl Sci Eng Res 1:463–474

    CrossRef  Google Scholar 

  • Silva HSA, Romeiro RS, Carrer-Filho R, Pereira JLA, Mizubuti ESG, Mounteer A (2004) Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J Phytopathol 152:371–375

    CrossRef  Google Scholar 

  • Simon A (1989) Biological control of take-all of wheat by Trichoderma koningii under controlled environmental conditions. Soil Biol Biochem 21:323–326

    CrossRef  Google Scholar 

  • Singh HB (2006) Trichoderma: a born for biopesticide industry. J Mycol Plant Pathol 36:73–384

    Google Scholar 

  • Sivan A, Chet I (1989) Degradation of Fungal Cell Walls by Lytic Enzymes of Trichoderma Harzianum. Microbiology 135:675–682

    CAS  CrossRef  Google Scholar 

  • Smith GE (1957) Inhibition of Fusarium oxysporum f.sp. lycopersici by a species of Micromonospora isolated from tomato. Phytopathology 47:429–432

    Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium suppressive soils. Phytopathology 74:1115–1124

    CrossRef  Google Scholar 

  • Stevens C, Khan VA, JY L, Wilson CL, Pusey PL, Kabwe MK, Igwegbe ECK, Chalutz E, Droby S (1997) Integration of ultraviolet (UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables. Biol Control 10:98–103

    CrossRef  Google Scholar 

  • Stromberg A, Brishammar S (1991) Induction of systemic resistance in potato (Solanum tuberosum L.) plants to late blight by local treatment with Phytophthora infestans (Mont) Debary, Phytophthora cryptogea Pethyb and Laff, or dipotassium phosphate. Potato Res 34:219–225

    CrossRef  Google Scholar 

  • Sugiprihatini D, Wiyono S, Widodo S (2011) Selection of yeasts antagonists as biocontrol agent of mango fruit rot caused by Botryodiplodia theobromae. Microbiol Indones 5:154–159

    CrossRef  Google Scholar 

  • Sutherland ED, Lockwood JL (1984) Hyperparasitism of oospores of some peronosporales by Actinoplanes missouriensis and Humicola fuscoatra and other actinomycetes and fungi. Can J Plant Pathol 6:139–145

    CrossRef  Google Scholar 

  • Takenaka S, Ishikawa S (2013) Biocontrol of sugar beet seedling and taproot diseases caused by Aphanomyces cochlioides by Pythium oligandrum treatments before transplanting. Jpn Agric Res Quarter 47:75–83

    CrossRef  Google Scholar 

  • Takenaka S, Tamagake H (2009) Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Plant Pathol 75:340–348

    CrossRef  Google Scholar 

  • Tennant PF, Gonsalves C, Ling KS, Fitch M, Manshardt R, Slinghtom JL, Gonsalves D (1994) Differential protection against Papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359–1366

    CrossRef  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    CrossRef  Google Scholar 

  • Tjamos EC, Tjamos SE, Antoniou PP (2010) Biological management of plant diseases: highlights on research and application. J Plant Pathol 92:17–21

    Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Trejo-Estrada SR, Pasezczynsk A, Crawford DL (1998) Antibiotics and enzymes produced by the biological control agent Streptomyces.violaceusniger YCED- 9. J Ind Microbiol Biotechnol 21:81–90

    CAS  CrossRef  Google Scholar 

  • Upadhyay RS, Rai B (1987) Studies on antagonism between Fusarium udum Butler and root region microflora of pigeonpea. Plant Soil 101:79–93

    CrossRef  Google Scholar 

  • Vallance J, Le Floch G, Deniel F, Barbier G, Levesque CA, Rey P (2009) Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl Environ Microbiol 75:4790–4800

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicedo B, Peñalver R, Asins MJ, Lopez MM (1993) Biological control of Agrobacterium tumefaciens, colonization, and pAgK84 transfer with Agrobacterium radiobacter K84 and the Tra- mutant strain K1026. Appl Environ Microbiol 59:309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt W, Buchenauer H (1997) Enhancement of biological control by combination of antagonistic fluorescent Pseudomonas strains and resistance inducers against damping off and powdery mildew in cucumber. J Plant Dis Prot 104:272–280

    Google Scholar 

  • Walther D, Gindrat D (1988) Biological control of damping-off of sugar-beet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. Can J Microbiol 34:631–637

    CrossRef  Google Scholar 

  • Webb RE, Larson RH, Walker JC (1952) Relationships of Potato leaf roll virus strains. Res Bull Agric Ex Stat Coll Agric Univ Wisconsin 178:1–38

    Google Scholar 

  • Wei G, Kloepper JW, Sadik T (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    CrossRef  Google Scholar 

  • Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E (1991) Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39:245–258

    CAS  CrossRef  Google Scholar 

  • Xiao K, Kinkel L, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    CAS  CrossRef  Google Scholar 

  • Yao HJ, Tian SP (2005) Effect of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    CAS  CrossRef  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • You MP, Sivasithamparam K, Kurtböke DI (1996) Actinomycetes in organic mulch used in avocado plantations and their ability to suppress Phytophthora cinnamomi. Biol Fertil Soils 22:237–242

    CrossRef  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterisation of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45:127–137

    CrossRef  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    CrossRef  Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    CrossRef  Google Scholar 

  • Zhang S, White TL, Martinez MC, McInroy JA, Kloepper JW, Klassen W (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol Control 53:129–135

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Tarafdar, A., Ghosh, R., Gopalakrishanan, S. (2017). Biological Control as a Tool for Eco-friendly Management of Plant Pathogens. In: Adhya, T., Mishra, B., Annapurna, K., Verma, D., Kumar, U. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-7380-9_8

Download citation