Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production

  • P. PanneerselvamEmail author
  • Upendra Kumar
  • T. C. K. Sugitha
  • C. Parameswaran
  • Sowarnalisha Sahoo
  • A. K. Binodh
  • Afrin Jahan
  • A. Anandan
Part of the Microorganisms for Sustainability book series (MICRO, volume 4)


Arbuscular mycorrhizal fungi (AMF) exhibit multifunctional mutualistic symbiosis between plants and members of phylum Glomeromycota. This bipartite association improves uptake of water and nutrients such as phosphate, nitrogen, and micronutrients and also protects the plants from abiotic and biotic stresses. The trade-offs between plant colonization by AMF are controlled by physiological and/or genetic drivers in nature. The plant signal, different subsets of its genes, and a diffusible fungal signaling factor that triggers gene activation support the progress of AMF infection in successive root cell layers. The molecular understanding of AMF association in plants particularly in rice is very important to select an efficient and right species to reap the full beneficial effects from these fungi. The potential of AMF has been exploited vastly for most of the crop plants, but its role in sustaining rice cultivation is not much dissected, since there is a belief that these fungi may not work under lowland rice cultivation, which is one of the misconceptions. Rice is our staple food crop and demands huge amount of phosphorous (P), nitrogen (N), etc. In order to overcome the future P crisis and mitigate drought for sustainable rice cultivation, AMF can be appreciated as a “savior for rice” irrespective of different cultivations. In the above perspective, the present chapter discusses about the potentiality of AMF for rice cultivation and also confers the molecular insight and future perspective of this fungal association for sustainable rice production.


Rice Arbuscular mycorrhizal fungi Nutrient management Molecular understanding 


  1. Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Sci 33:389–408CrossRefGoogle Scholar
  2. Abbott LK, Robson AD, Deboer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446CrossRefGoogle Scholar
  3. Abdul-Wasea AA, Elhindi KM (2010) Alleviation of drought stress of marigold plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18:93–98Google Scholar
  4. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  5. Al-Karaki GM (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7CrossRefGoogle Scholar
  6. Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis lag ex Steud. New Phytol 91:191–196CrossRefGoogle Scholar
  7. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, CambridgeGoogle Scholar
  8. Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374CrossRefGoogle Scholar
  9. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96CrossRefGoogle Scholar
  10. Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  11. Ashoub MA, Esmail AM, Shaalan SN, Osman AM (1993) Response of rice plant to mineral nitrogen and biofertilization. Ann Agric Sci 38(1):139–148Google Scholar
  12. Auge RM, Schekel KA, Wample RL (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99:291–302CrossRefGoogle Scholar
  13. Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khanf MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271CrossRefGoogle Scholar
  14. Azcon-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soilborne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:57–464Google Scholar
  15. Baby UI, Manibhushanrao K (1996) Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease. Mycorrhiza 6(3):201–206CrossRefGoogle Scholar
  16. Bagyaraj DJ, Menge JA (1978) Interaction between a VA-mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol 80:567–573CrossRefGoogle Scholar
  17. Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43(4):810–813PubMedPubMedCentralGoogle Scholar
  18. Barea JM, Pozo MJ, Azcon R, Azcon-Aquiller C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  19. Berg G, Grosch R, Scherwinski K (2007) Risk assessment for microbial antagonists and their effects on nontarget organisms. Gesunde Pflanzen 59:107–117CrossRefGoogle Scholar
  20. Bethlenfalvay GJ, Barea JM (1994) Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation. Am J Altern Agric 9(4):157–161CrossRefGoogle Scholar
  21. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017. PubMedCrossRefGoogle Scholar
  22. Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514CrossRefGoogle Scholar
  23. Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122PubMedCrossRefGoogle Scholar
  24. Chen C, Ane JM, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180:311–315PubMedCrossRefGoogle Scholar
  25. Ciccolini V, Ercoli L, Davison J, Vasar M, Öpik M, Pellegrino E (2016) Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland. FEMS Microbiol Ecol 92(12):186CrossRefGoogle Scholar
  26. Cordier C, Gianinazzi S, Giannazzi-Pearson V (1996) Colonization patterns of root tissues by Phytophthora nicotianae Var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:289–294CrossRefGoogle Scholar
  27. Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119Google Scholar
  28. Dhillion SS (1992) Host-endophyte specificity of vesicular-arbuscular mycorrhizal colonization of Oryza sativa L. at the pre-transplant stage in low or high phosphorus soil. Soil Biol Biochem 24(5):405–411CrossRefGoogle Scholar
  29. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221PubMedCrossRefGoogle Scholar
  30. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966PubMedCrossRefGoogle Scholar
  31. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  32. Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94CrossRefGoogle Scholar
  33. Filter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99:257–265CrossRefGoogle Scholar
  34. Gangopadhyay S, Das KM (1984) Interaction between vesicular-arbuscular mycorrhiza and rice roots. Indian Phytopathol 35:34–38Google Scholar
  35. Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when non mycorrhizal. Plant Soil 290:283–291CrossRefGoogle Scholar
  36. George E, Hssuser KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137CrossRefGoogle Scholar
  37. Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175CrossRefGoogle Scholar
  38. Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonized with arbuscular mycorrhizal fungi. Can J Bot Revue Canadienne De Botanique 85:644–651Google Scholar
  39. Grosch R, Lottmann J, Faltin F, Berg G (2005) Use of bacterial antagonists to control diseases caused by Rhizoctonia solani. Gesunde Pflanzen 57:199–205CrossRefGoogle Scholar
  40. Gupta N, Ali SS (1993) VAM inoculation for wetland rice. Mycorrhiza News 5:5–6Google Scholar
  41. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920PubMedCrossRefGoogle Scholar
  42. Habte M, Fox RL (1993) Effectiveness of VAM fungi in nonsterile soils before and after optimization of P in soil solution. Plant Soil 151:219–226CrossRefGoogle Scholar
  43. Hajiboland R, Aliasgharzad N, Barzeghar R (2009a) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55(3):93–100Google Scholar
  44. Hajiboland R, Aliasgharzad N, Barzeghar R (2009b) Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agric Slov 93(2):153CrossRefGoogle Scholar
  45. Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol 101:677–684CrossRefGoogle Scholar
  46. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  47. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  48. Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hassouna MG, Aboul-Nasr A (1992) Application of growth promoting rhizobacteria and vesicular arbuscular mycorrhizae on soybean (Glycine max) on the poor lands of N. W. Egypt. Commun Sci Dev Res 39:47–61Google Scholar
  50. Hepper CM, Warner A (1983) Role of organic matter in growth of a vesicular-arbuscular mycorrhizal fungus in soil. Trans Br Mycol Soc 81:155–156CrossRefGoogle Scholar
  51. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(2007):139–146PubMedCrossRefGoogle Scholar
  52. Ho I (1993) Analysis of nutrient uptake by six species of vesicular-arbuscular mycorrhizal fungi in Zea mays. Indian J Mycol Plant Pathol 23:64–69Google Scholar
  53. Ho I, Trappe JM (1973) Translocation of carbon from Festuca plants to their endomycorrhizal fungi. Nature 244:30–31CrossRefGoogle Scholar
  54. Hong JJ, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ (2012) Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta 236(3):851–865PubMedCrossRefGoogle Scholar
  55. Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, pp 191–200CrossRefGoogle Scholar
  56. Ikram A, Mahmud AW, Ghani MN, Ibrahim MT, Zainal AB (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. Seedling rootstock with vesicular-arbuscular mycorrhizal fungi. Plant Soil 145:231–236CrossRefGoogle Scholar
  57. Ilag LL, Rosales AM, Elazegvi FV, Mew TW (1987) Changes in the population of infective endomycorrhizal fungi in a rice based cropping system. Plant Soil 103:67–73CrossRefGoogle Scholar
  58. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G-J, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531PubMedCrossRefGoogle Scholar
  59. Itao E, Ella E, Kawanto N (1999) Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crop Res 64:75–90CrossRefGoogle Scholar
  60. Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916CrossRefGoogle Scholar
  61. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Katyal JC, Vlek PLG (1985) Micronutrient problems in tropical Asia. Fertil Res 7:69–94CrossRefGoogle Scholar
  64. Kerni PN (1991) Nitrogen biofertilizers in rice, seed, seedling and soil application. Res Dev Rep 8(1):60–64. C.F. Soils and Fertilizers Abstracts 56, 759, 1993Google Scholar
  65. Koide R (1993) Physiology of the mycorrhizal plant. Adv Plant Pathol 9:33–54Google Scholar
  66. Kojima T, Saito M (2004) Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Mycol Res 108(06):610–615PubMedCrossRefGoogle Scholar
  67. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 105:9823–9828PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kucey RM, Janzen HH (1987) Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant Soil 104(1):71–78CrossRefGoogle Scholar
  69. Kumar U, Panneerselvam P, Banik A, Annapurna K (2016) Lower frequency and diversity of antibiotic-producing fluorescent pseudomonads in rhizosphere of Indian rapeseed–mustard (Brassica juncea L. Czern.). In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, pp 1–8Google Scholar
  70. Laheurte F, Leyval I, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116Google Scholar
  71. Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36(11):1911–1915PubMedGoogle Scholar
  72. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Dénarié J (2004) A putative Ca2R and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  73. Li XL, Christie P (2001) Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207PubMedCrossRefGoogle Scholar
  74. Li H, Wu C, Ye ZH, Wu SC, Wu FY, Wong MH (2011) Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices. J Hazard Mater 194:414–421PubMedCrossRefGoogle Scholar
  75. Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190PubMedCrossRefGoogle Scholar
  76. Lin A, Zhang X, Yang X (2014) Glomus mosseae enhances root growth and cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils. Ecotoxicology 23(10):2053–2061PubMedCrossRefGoogle Scholar
  77. Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11(1):14–22PubMedCrossRefGoogle Scholar
  78. Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47(7):807–817PubMedCrossRefGoogle Scholar
  79. Maiti D (2015) improving phosphorus nutrition of upland Rice through native arbuscular mycorrhiza (AM). Rice Res Open Access 3(3):e115Google Scholar
  80. Maiti D, Barnwal MK, Rana SK, Variar M, Singh RK (2006) Enhancing native arbuscular mycorrhizal association to improve phosphorus nutrition of rainfed upland rice (Oryza sativa L.) through cropping systems. Indian Phytopathol 59:432–438Google Scholar
  81. Maiti D, Toppo NN, Variar M (2011) Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza 21(8):659–667Google Scholar
  82. Maiti D, Singh RK, Variar M (2012) Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.) Biol Fertil Soils 48(1):67–73CrossRefGoogle Scholar
  83. Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn grown under different water stress conditions. Eur J Soil Biol 46:151–156CrossRefGoogle Scholar
  84. Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20(8):912–921PubMedCrossRefGoogle Scholar
  85. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function 2000. Springer, Dordrecht, pp 3–18CrossRefGoogle Scholar
  86. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2R/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mohandas S, Panneerselvam P (2016) Arbuscular Mycorrhizal fungi in fruit crops production. Daya Publishing House, New Delhi, p 397Google Scholar
  88. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42(2):236–250PubMedCrossRefGoogle Scholar
  89. Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69(5):2816–2824PubMedPubMedCentralCrossRefGoogle Scholar
  90. Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72(1):125–131PubMedCrossRefGoogle Scholar
  91. Panneerselvam P, Saritha B (2017) Influence of AM fungi and its associated bacteria on growth promotion and nutrient acquisition in grafted sapota seedling production. J Appl Nat Sci 9(1):621–625Google Scholar
  92. Panneerselvam P, Thangaraju M, Jayarama (2006) Induction of defense mechanisms in Coffea arabica L. by native rhizobacterial isolates against coffee leaf rust (Hemileia vastatrix) disease. Trop Agric Res 18:173–181Google Scholar
  93. Panneerselvam P, Saritha B, Mohandas S, Upreti KK, Poovarasan S, Sulladmath VV, Venugopalan R (2013) Effect of mycorrhiza-associated bacteria on enhancing colonization and sporulation of Glomus mosseae and growth promotion in sapota (Manilkara achras (mill) Forsberg) seedlings. Biol Agric Hortic 29(2):118–131CrossRefGoogle Scholar
  94. Panneerselvam P, Anushree PM, Kumar U, Anandan A, Paramesswaran C, Anjani Kumar, Nayak AK (2016a) Studies on host preference of AM fungi in different aerobic rice varieties under elevated carbon dioxide condition. In: 57th annual conference of association of Microbiologist of India and International symposium on Microbes and Biosphere: what’s New What’s next, November 24–27, 2016, Gauhati University, AssamGoogle Scholar
  95. Panneerselvam P, Kumar U, Saha S, Adak T, Munda S (2016b) Effect of Bis-pyribac sodium on arbuscular mycorrhizal (AM) fungal association in rice. NRRI Newsl 37(1):18Google Scholar
  96. Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7(4):414–421PubMedCrossRefGoogle Scholar
  97. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775PubMedCrossRefGoogle Scholar
  98. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329PubMedPubMedCentralCrossRefGoogle Scholar
  99. Peterso RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088CrossRefGoogle Scholar
  100. Pfeffer P, Douds D, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120(2):587–598. PMC 59298. PMID 10364411 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83PubMedCrossRefGoogle Scholar
  102. Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):1–12Google Scholar
  103. Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus etunicatum L.) on mobilization of zinc in wetland rice (Oryza sativa L.) Biol Fertil Soils 33:323–327CrossRefGoogle Scholar
  104. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  105. Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Plant Physiol 98:767–722CrossRefGoogle Scholar
  106. Ruíz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167(11):862–869PubMedCrossRefGoogle Scholar
  107. Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037PubMedCrossRefGoogle Scholar
  108. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19(2):610–624PubMedPubMedCentralCrossRefGoogle Scholar
  109. Saritha B, Panneerselvam P, Mohandas S, Sulladmath VV, Ravindrababu P (2014) Studies on host preference of Glomus sp and their synergistic effect on sapota (Manilkara achras (mill) Forsberg) seedlings growth. Plant Arch 14(2):701–706Google Scholar
  110. Saritha B, Panneerselvam P, Ganeshamurthy AN (2015) Antagonistic potential of mycorrhiza associated Pseudomonas putida against soilborne fungal pathogens. Plant Arch 15(2):763–768Google Scholar
  111. Sathyarahini K, Panneerselvam P, Ganeshamurthy AN (2015) Studies on relationship between total glomalin and soil aggregates in perennial fruit crop orchards. Int J Appl Pure Sci Agric 1(7):47–52Google Scholar
  112. Secilia J, Bagyaraj DJ (1992) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice (Oryza sativa L.) Biol Fertil Soils 13(2):108–111CrossRefGoogle Scholar
  113. Secilia J, Bagyaraj DJ (1994a) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice – a preliminary screen. Mycorrhiza 4(6):265–268CrossRefGoogle Scholar
  114. Secilia J, Bagyaraj DJ (1994b) Evaluation and first-year field testing of efficient vesicular arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings. World J Microbiol Biotechnol 10(4):381–384PubMedCrossRefGoogle Scholar
  115. Sharma MP, Gupta S, Sharma SK, Vyas AK (2012) Effect of tillage and crop sequences on arbuscular mycorrhizal symbiosis and soil enzyme activities in soybean (Glycine max L. Merril) rhizosphere. Indian J Agric Sci 82:25–30Google Scholar
  116. Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513PubMedCrossRefGoogle Scholar
  117. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, London, p 605Google Scholar
  118. Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114(1):1–38CrossRefGoogle Scholar
  119. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  120. Smith SE, Smith FA, Jakobson I (2003) Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  121. Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41(3):505–514CrossRefGoogle Scholar
  122. Solaiman MZ, Hirata H (1996) Effectiveness of arbuscular mycorrhizal colonization at nursery–stage on growth and nutrition in wetland rice (Oryza sativa L.) after transplanting under different soil fertility and water regimes. Soil Sci Plant Nutr 42:56–571CrossRefGoogle Scholar
  123. Solaiman MZ, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191(1):1–12CrossRefGoogle Scholar
  124. Solaiman MZ, Hirata H (1998) Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions. Biol Fertil Soils 27:92–96CrossRefGoogle Scholar
  125. Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterization of mycorrhizas formed by Glomus sp. on root of hypernodulating mutants of Lotus japonicus. J Plant Res 113:443–448CrossRefGoogle Scholar
  126. Sahoo S, Panneerselvam P, Chowdhury T, Kumar A, Kumar U, Afrin J, Ansuman S, Anandan A (2017) Understanding the AM fungal association in flooded rice under elevated CO2 condition. Oryza 54(3):290–297Google Scholar
  127. Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci U S A 98:15366–15371PubMedPubMedCentralCrossRefGoogle Scholar
  128. St-Arnaud M, Hamel C, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Plant Pathol 16:187–194CrossRefGoogle Scholar
  129. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962PubMedCrossRefGoogle Scholar
  130. Tamura Y, Kobae Y, Mizuno T, Hata S (2012) Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci Biotechnol Biochem 76:309–313PubMedCrossRefGoogle Scholar
  131. Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyposphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395CrossRefGoogle Scholar
  132. Thompson JP (1996) Correction of dual phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultivars of vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 28:941–951CrossRefGoogle Scholar
  133. Trotta A, Vanese GC, Gnavi E, Fascon A, Sampo S, Berta G (1996) Interaction between the soilborne root pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plant. Plant Soil 185:199–209CrossRefGoogle Scholar
  134. Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E (2009) Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol 154(2):195–204CrossRefGoogle Scholar
  135. Wang C, Gu Z, Cui H, Zhu H, Fu S, Yao Q (2015) Differences in arbuscular mycorrhizal fungal community composition in soils of three land use types in subtropical hilly area of southern China. PLoS One 10(6):e0130983PubMedPubMedCentralCrossRefGoogle Scholar
  136. Warner A (1984) Colonization of organic matter by vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 82:352–354CrossRefGoogle Scholar
  137. Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JP, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28(3):316–324PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wellings NP, Wearing AH, Thompson JP (1991) Vesicular-arbuscular mycorrhizae (VAM) improve phosphorus and zinc nutrition and growth of pigeon pea in a vertisol. Aust J Agric Res 42:835–845CrossRefGoogle Scholar
  139. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  140. Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M (2013) Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci 4:533PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107. CrossRefGoogle Scholar
  142. Wu F, Hu J, Wu S, Wong MH (2015) Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in as-spiked soils. Environ Sci Pollut Res Int 22(12):8919–8926PubMedCrossRefGoogle Scholar
  143. Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198(3):836–852PubMedCrossRefGoogle Scholar
  144. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza enhanced expression. J Exp Bot 58:249–501Google Scholar
  145. Yanni YG, Zidan MI, Shalan SN (1984) Effect of inoculation with blue-green algae, source and rates of combined nitrogen on plant growth, grain yield and nitrogen content in rice plant (Oryza sativa), Giza 172 (Egypt). In: General Conference of Agricultural Research Centre, Giza, EgyptGoogle Scholar
  146. Yao MK, Tweddell RJ, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242PubMedCrossRefGoogle Scholar
  147. Zhang XH, Zhu YG, Lin AJ, Chen BD, Smith SE, Smith FA (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64(10):1627–1632PubMedCrossRefGoogle Scholar
  148. Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41(5):930–935CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • P. Panneerselvam
    • 1
    Email author
  • Upendra Kumar
    • 1
  • T. C. K. Sugitha
    • 2
  • C. Parameswaran
    • 1
  • Sowarnalisha Sahoo
    • 1
  • A. K. Binodh
    • 2
  • Afrin Jahan
    • 1
  • A. Anandan
    • 1
  1. 1.National Rice Research InstituteCuttackIndia
  2. 2.Tamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations