Recent Advancement on Map Kinase Cascade in Biotic Stress

Chapter

Abstract

Mitogen-activated protein kinases (MAPKs) are cell-signaling enzymes that govern an extraordinarily discrete range of biological processes in eukaryotes. MAPK cascade has come up as one of the most well-studied signaling pathways in recent years. It plays a vital role in transmitting extracellular signals to the nucleus in response to various environmental stresses. A MAPK cascade composes of a three strata system where each stratum is phosphorylated by upper stratum. It is depicted as a MAP3K-MAP2K-MAPK module that serves as a link between upstream receptors and downstream targets. MAP2K being the middle point of this cascade converge all the signals from upstream MAP3Ks and target genome through downstream MAPKs. Occasionally, MAP4Ks also get employed in coupling upstream signaling components to the core MAPK cascade. MAPKs then direct various genes involved in stress responses as well as cellular and developmental processes. Therefore, in this chapter, an endeavor has been made to compile the role of MAPK cascade in biotic stress in plants.

Keywords

Elicitor-triggered immunity PAMP-triggered immunity Plant defense Signal transduction 

References

  1. Abass M, Morris PC (2013) The Hordeum vulgare signaling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. Plant Physiol 170(15):1353–1359CrossRefGoogle Scholar
  2. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90PubMedCrossRefGoogle Scholar
  3. Albert M (2013) Peptides as triggers of plant defence. J Exp Bot 64:5269–5279PubMedCrossRefGoogle Scholar
  4. Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113PubMedCrossRefGoogle Scholar
  5. Andreasson E, Jenkins T, Brodersen P et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589PubMedPubMedCentralCrossRefGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  7. Asai T, Tena G, Plotnikova J et al (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  8. Bartels S, Anderson JC, González Besteiro MA et al (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1 -mediated responses in Arabidopsis. Plant Cell 21:2884–2897PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bayer M, Nawy T, Giglione C et al (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488PubMedCrossRefGoogle Scholar
  10. Beckers GJM, Jaskiewicz M, Liu Y et al (2009) Mitogen -activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bednarek P (2012) Chemical warfare or modulators of defense responses– the function of secondary metabolites in plant immunity. Curr Opin Plant Biol 15:407–414PubMedCrossRefGoogle Scholar
  12. Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497PubMedCrossRefGoogle Scholar
  13. Bethke G, Unthan T, Uhrig JF et al (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bethke G, Pecher P, Eschen-Lippold L et al (2012) Activation of the Arabidopsis thaliana mitogen -activated protein kinase MPK11 by the flagellin -derived elicitor peptide, flg22. Mol Plant-Microbe Interact 25:471–480PubMedCrossRefGoogle Scholar
  15. Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54PubMedCrossRefGoogle Scholar
  16. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe -associated molecular patterns and danger signals by pattern -recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefGoogle Scholar
  17. Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host -pathogen interactions. Annu Rev Phytopathol 44:393–416PubMedCrossRefGoogle Scholar
  18. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205PubMedCrossRefGoogle Scholar
  19. Cai G, Wang G, Wang L, Pan J, Liu Y, Li D (2013) ZmMKK1, a novel group A mitogen -activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Plant Sci 214:57–73PubMedCrossRefGoogle Scholar
  20. Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress -induced mitogen – activated protein kinase signaling pathways at the level of two distinct mitogen -activated protein kinase kinases. Plant Cell 14:703–111PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen LQ, Hou BH, Lalonde S et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheng Z, Li JF, Niu Y et al (2015) Pathogen -secreted proteases activate a novel plant immune pathway. Nature 521(7551):213–216PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin -induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500PubMedCrossRefGoogle Scholar
  24. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedPubMedCentralGoogle Scholar
  26. del Pozo O, Pedley KF, Martin GB (2004) MAPKKK alpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847PubMedCrossRefGoogle Scholar
  28. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456PubMedCrossRefGoogle Scholar
  29. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1 and TGA transcription factors play a role in Pto -mediated disease resistance in tomato. Plant J 36:905–917PubMedCrossRefGoogle Scholar
  30. Feilner T, Hultschig C, Lee J et al (2005) High throughput identification of potential Arabidopsis mitogen -activated protein kinases substrates. Mol Cell Proteomics 4:1558–1568PubMedCrossRefGoogle Scholar
  31. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276PubMedCrossRefGoogle Scholar
  32. Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C (2016) The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen -activated protein kinase substrate. J Exp Bot 67(8):2483–2494PubMedCrossRefGoogle Scholar
  33. Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3(109):cm4PubMedGoogle Scholar
  34. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor -like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedCrossRefGoogle Scholar
  35. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant -pathogen interactions. Cell Microbiol 6:201–211PubMedCrossRefGoogle Scholar
  36. Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell -specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173:713–721PubMedCrossRefGoogle Scholar
  37. Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell -to -cell signal -regulated virulence factor. Plant Physiol 149:1017–1027PubMedPubMedCentralCrossRefGoogle Scholar
  38. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49PubMedCrossRefGoogle Scholar
  39. Hamann T (2012) Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front Plant Sci 3:77PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hamel LP, Nicole MC, Sritubtim S et al (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198PubMedCrossRefGoogle Scholar
  41. Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306PubMedCrossRefGoogle Scholar
  42. Han L, Li GJ, Yang KY et al (2010) Mitogen -activated protein kinase 3 and 6 regulate Botrytis cinerea–induced ethylene production in Arabidopsis. Plant J 64:114–127PubMedGoogle Scholar
  43. Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131PubMedCrossRefGoogle Scholar
  44. Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor -like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue -specific and temperature -dependent cell death in Arabidopsis. J Biol Chem 281:36969–36976PubMedCrossRefGoogle Scholar
  47. Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–1170PubMedPubMedCentralCrossRefGoogle Scholar
  48. Izumitsu K, Yoshimi A, Kubo D, Morita A, Saitoh Y, Tanaka C (2009) The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity and adaptation to oxidative stress in Cochliobolus heterostrophus. Curr Genet 55:439–448PubMedCrossRefGoogle Scholar
  49. Jammes F, Song C, Shin D et al (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS -mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell -preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6:1875–1877PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  52. Kim CY, Zhang S (2004) Activation of a mitogen -activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142–151PubMedCrossRefGoogle Scholar
  53. Kim CY, Liu Y, Thorne ET et al (2003) Activation of a stress -responsive mitogen activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim SH, Yoo SJ, Min KH, Nam SH, Cho BH, Yang KY (2013) Putrescine regulating by stress -responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochem Biophys Res Commun 437:502–508PubMedCrossRefGoogle Scholar
  55. Kishi-Kaboshi M, Okada K, Kurimoto L et al (2010) A rice fungal MAMP responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kong Q, Qu N, Gao M et al (2012) The MEKK1 -MKK1/MKK2 -MPK4 kinase cascade negatively regulates immunity mediated by a mitogen -activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24:2225–2236PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kong X, Lv W, Zhang D, Jiang S, Zhang S, Li D (2013) Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase. PLoS One 8(2):e57714PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li H, Xu H, Zhou Y et al (2007) The phosphor threonine lyase activity of a bacterial type III effector family. Science 315:1000–1003PubMedCrossRefGoogle Scholar
  60. Li G, Meng X, Wang R et al (2012) Dual -level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8:e1002767PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li B, Jiang S, Yu X et al (2015) Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27(3):839–856PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu Y, Zhang S (2004) Phosphorylation of 1 -aminocyclopropane -1 -carboxylic acid synthase by MPK6, a stress -responsive mitogen -activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31(6):1446–1460CrossRefGoogle Scholar
  64. Liu JZ, Braun E, Qiu WL et al (2014) Positive and negative roles for soybean MPK6 in regulating defense responses. Mol Plant-Microbe Interact 27(8):824–834PubMedCrossRefGoogle Scholar
  65. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor -like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:496–501PubMedCrossRefGoogle Scholar
  66. Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8(7):e68503PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen -responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653PubMedPubMedCentralCrossRefGoogle Scholar
  68. MAPK -Group (2002) Mitogen -activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308CrossRefGoogle Scholar
  69. Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell -death signaling networks associated with plant immunity. Plant J 64:379–391PubMedCrossRefGoogle Scholar
  70. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980PubMedCrossRefGoogle Scholar
  71. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122PubMedPubMedCentralCrossRefGoogle Scholar
  72. Meng X, Zhang S (2013) MAPK cascades in plant disease signaling. Annu Rev Phytopathol 51:245–266PubMedCrossRefGoogle Scholar
  73. Meng X, Xu J, He Y et al (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25(3):1126–1142PubMedPubMedCentralCrossRefGoogle Scholar
  74. Meszaros T, Helfer A, Hatzimasoura E et al (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defense responses to the bacterial elicitor flagellin. Plant J 48:485–498PubMedCrossRefGoogle Scholar
  75. Mithoe SC, Ludwig C, Pel MJ et al (2016) Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 17(3):441–454PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1993) ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett 336:440–444PubMedCrossRefGoogle Scholar
  78. Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520PubMedCrossRefGoogle Scholar
  79. Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen -activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704PubMedCrossRefGoogle Scholar
  80. O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779PubMedCrossRefGoogle Scholar
  81. Oka K, Amano Y, Katou S, Seo S, Kawazu K, Mochizuki A, Kuchitsu K, Mitsuhara I (2013) Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores. Mol Plant-Microbe Interact 26(6):668–675PubMedCrossRefGoogle Scholar
  82. Pan J, Zhang M, Kong X et al (2012) ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 235:661–676PubMedCrossRefGoogle Scholar
  83. Petersen M, Brodersen P, Naested H et al (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMedCrossRefGoogle Scholar
  84. Pitzschke A, Hirt H (2009) Disentangling the complexity of mitogen -activated protein kinases and reactive oxygen species signaling. Plant Physiol 149:606–615PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2 -MPK4 pathway in ROS signaling. Mol Plant 2:120–137PubMedPubMedCentralCrossRefGoogle Scholar
  86. Popescu SC, Popescu GV, Snyder M, Dinesh SP (2009) Integrated analysis of co -expressed MAP kinase substrates in Arabidopsis thaliana. Plant Signal Behav 4:524–527PubMedPubMedCentralCrossRefGoogle Scholar
  87. Qiu JL, Fiil BK, Petersen K et al (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221PubMedPubMedCentralCrossRefGoogle Scholar
  88. Qutob D, Kemmerling B, Brunner F et al (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signaling and early signaling elements during defence responses to microbe – or damage -associated molecular patterns. Plant J 68:100–113PubMedCrossRefGoogle Scholar
  90. Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen activated protein kinase kinase kinase gene family in rice. DNA Res 17(3):139–153PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565PubMedCrossRefGoogle Scholar
  92. Ren D, Liu Y, Yang KY et al (2008) A fungal -responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105:5638–5643PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen -activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefGoogle Scholar
  94. Roux M, Schwessinger B, Albrecht C et al (2011) The Arabidopsis leucine -rich repeat receptor -like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455PubMedPubMedCentralCrossRefGoogle Scholar
  95. Roux ME, Rasmussen MW, Palma K et al (2015) The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 34(5):593–608PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sawinski K, Mersmann S, Robatzek S, Bohmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant-Microbe Interact 26:626–632PubMedCrossRefGoogle Scholar
  97. Seo S, Sano H, Ohashi Y (1999) Jasmonate -based wound signal transduction requires activation of WIPK, a tobacco mitogen -activated protein kinase. Plant Cell 11:289–298PubMedPubMedCentralCrossRefGoogle Scholar
  98. Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007) The mitogen -activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J 49:899–909PubMedCrossRefGoogle Scholar
  99. Serrano M, Coluccia F, Torres M, L’Haridon F, Metraux JP (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J (2016) Regulation of WRKY46 transcription factor function by mitogen -activated protein kinases in Arabidopsis thaliana. Front Plant Sci 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a MAPK gene from cucumber required for trichoderma-conferred plant resistance. Plant Physiol 142:1169–1179PubMedPubMedCentralCrossRefGoogle Scholar
  102. Siddhi K. Jalmi, Alok K. Sinha (2015) ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Front Plant Sci 6Google Scholar
  103. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen -activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  104. Song Q, Li D, Dai Y, Liu S, Huang L, Hong Y, Zhang H, Song F (2015) Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus). BMC Plant Biol 15:298PubMedPubMedCentralCrossRefGoogle Scholar
  105. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100PubMedCrossRefGoogle Scholar
  106. Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555PubMedCrossRefGoogle Scholar
  107. Sturgill TW, Ray LB (1986) Muscle proteins related to microtubule associated protein-2 are substrates for an insulin stimulatable kinase. Biochem Biophys Res Commun 134:565–571PubMedCrossRefGoogle Scholar
  108. Su T, Xu J, Li Y et al (2011) Glutathione -indole -3 -acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:364–380PubMedPubMedCentralCrossRefGoogle Scholar
  109. Suarez-Rodriguez MC, Adams-Phillips L et al (2007) MEKK1 is required for flg22 -induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669PubMedPubMedCentralCrossRefGoogle Scholar
  110. Takahashi F, Yoshida R, Ichimura K et al (2007) The mitogen -activated protein kinase cascade MKK3 -MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818PubMedPubMedCentralCrossRefGoogle Scholar
  111. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429PubMedCrossRefGoogle Scholar
  112. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309PubMedPubMedCentralCrossRefGoogle Scholar
  113. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense -related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  114. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  115. Wan J, Zhang XC, Neece D et al (2008) A LysM receptor -like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen -activated protein kinases in Arabidopsis. Plant Cell 19:63–73PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide–mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang F, Wang C, Yan Y, Jia H, Guo X (2016) Overexpression of cotton GhMPK11 decreases disease resistance through the gibberellin signaling pathway in transgenic Nicotiana benthamiana. Front Plant Sci 7:689PubMedPubMedCentralGoogle Scholar
  121. Wilson KP, Fitzgibbon MJ, Caron PR et al (1996) Crystal structure of p38 mitogen -activated protein kinase. J Biol Chem 271:27696–27700PubMedCrossRefGoogle Scholar
  122. Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122PubMedPubMedCentralCrossRefGoogle Scholar
  123. Xu J, Zhang SQ (2015) Mitogen -activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20:56–64PubMedCrossRefGoogle Scholar
  124. Xu H, Wang X, Sun X, Shi Q, Yang F, Du D (2008a) Molecular cloning and characterization of a cucumber MAP kinase gene in response to excess NO3− and other abiotic stresses. Sci Hortic 117:1–8CrossRefGoogle Scholar
  125. Xu J, Li Y, Wang Y et al (2008b) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006PubMedCrossRefGoogle Scholar
  126. Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14:351–357PubMedCrossRefGoogle Scholar
  127. Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68Google Scholar
  128. Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen -activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang S, Klessig DF (1998) Resistance gene N -mediated de novo synthesis and activation of a tobacco mitogen -activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci U S A 95:7433–7438PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339–347PubMedCrossRefGoogle Scholar
  132. Zhang X, Dai Y, Xiong Y, Defraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52:1066–1079PubMedCrossRefGoogle Scholar
  133. Zhang Z, Wu Y, Gao M et al (2012) Disruption of PAMP -induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB -LRR protein SUMM2. Cell Host Microbe 11:253–263PubMedCrossRefGoogle Scholar
  134. Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D (2013) The overexpression of a maize mitogen -activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol (Stuttg) 16(3):558–570CrossRefGoogle Scholar
  135. Zhang T, Chen S, Harmon AC (2016a) Protein -protein interactions in plant mitogen -activated protein kinase cascades. J Exp Bot 67(3):607–618PubMedCrossRefGoogle Scholar
  136. Zhang X, Wang G, Gao J, Nie M, Liu W, Xia Q (2016b) Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. Tomato DC3000 in tobacco. Plant Mol Biol 90(1–2):19–31PubMedCrossRefGoogle Scholar
  137. Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen -activated protein kinase cascade, MKK9 -MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF -Tu by the receptor EFR restricts agrobacterium -mediated transformation. Cell 125:749–760PubMedCrossRefGoogle Scholar
  139. Zolnierowicz S, Bollen M (2000) Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19–24, 1999. EMBO J 19:483–488PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.National Institute of Science Communication and Information Resources (NISCAIR)New DelhiIndia

Personalised recommendations