Advertisement

Role of NBS-LRR Proteins in Plant Defense

Chapter

Abstract

The NBS-LRR proteins are encoded by one of the largest and most important gene family involved in disease resistance in plants. Many of these NBS-LRR proteins recognize effectors secreted by pathogens directly or indirectly that in turn activate downstream signaling pathways leading to activation of plant defense response against various classes of pathogens including bacterial, fungal, viral, nematode and insect. Defense response by NBS-LRR protein is a sophisticated strategy that induces effector-triggered immunity (ETI). The NBS-LRR proteins comprised of amino-terminal variable domain, a central nucleotide-binding site (NBS) and carboxy-terminal leucine-rich repeats (LRR) domain. The NBS domain binds and hydrolyzes ATP and primarily functions as a signal transduction switch following pathogen recognition. LRRs are highly adaptable structural domains that are involved in protein-protein interactions, and these LRRs can also evolve very different binding specificities. In the following chapter we have discussed in detail about the present knowledge pertaining to NBS-LRR class of proteins and their prospect in crop improvement against diseases.

Keywords

Plant Defense NBS-LRR R-Genes Effectors Phytopathogens 

Notes

Acknowledgment

We are thankful to the Director of CSIR-IHBT, Palampur, for his kind support. We acknowledge the financial support from SERB-DST, New Delhi, under the Fast Track Scheme for Young Scientists (YSS/2015/001036). Namo Dubey acknowledges UGC for providing fellowship. The CSIR-IHBT communication number for this article is 4141.

References

  1. Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site- leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci U S A 104:2531–2536PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ameline TC, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21CrossRefGoogle Scholar
  3. Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NBLRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gómez-Gómez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  5. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R-gene-mediated plant defenses. Science 295(5562):2032–2033Google Scholar
  6. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979PubMedCrossRefGoogle Scholar
  7. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076PubMedCrossRefGoogle Scholar
  8. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333PubMedCrossRefGoogle Scholar
  10. Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for disease resistance genes isolation: application to Rx2 locus in potato. Plant J 21(1):73–81PubMedCrossRefGoogle Scholar
  11. Bent AF (1996) Plant disease resistance: function meets structure. Plant Cell 8:1757–1771PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341PubMedCrossRefGoogle Scholar
  13. Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL (2011) Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci U S A 108:16463–16468PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brande BH, Wulff H, Thomas CM, Smoker M, Grant M, Jones JDG (2001) Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell 13:255–272CrossRefGoogle Scholar
  15. Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of root-knot nematode resistance gene Mi. Mol Plant-Microbe Interact 13:1130–1138PubMedCrossRefGoogle Scholar
  16. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism for plant NLR protein pairs: the“integrated decoy” hypothesis. Front Plant Sci 5:606PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803e14CrossRefGoogle Scholar
  19. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342PubMedCrossRefGoogle Scholar
  20. Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14(10):521–529PubMedCrossRefGoogle Scholar
  21. Collier SM, Hamel LP, Moffett P (2011) Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant-Microbe Interact 24:918–931PubMedCrossRefGoogle Scholar
  22. Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  23. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92(10):4114–4119PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dempsey DA, Silva H, Klessig DF (1998) Engineering disease and pest resistance in plants. Trends Microbiol 6:54–61PubMedCrossRefGoogle Scholar
  25. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy PD, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A 99:2404–2409PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100:8024–8029PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548PubMedCrossRefGoogle Scholar
  28. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction under lies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust virulence genes. Proc Natl Acad Sci U S A 103:8888–8893PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dropkin VH (1969) The necrotic reaction tomato and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637Google Scholar
  30. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371PubMedCrossRefGoogle Scholar
  31. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389PubMedPubMedCentralCrossRefGoogle Scholar
  32. Farnham G, Baulcombe DC (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease resistance gene from potato. Proc Natl Acad Sci U S A 103:18828–18833PubMedPubMedCentralCrossRefGoogle Scholar
  33. Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends In Genet 16:449–455CrossRefGoogle Scholar
  34. Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17(6):493–499PubMedCrossRefGoogle Scholar
  35. Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378PubMedCrossRefGoogle Scholar
  36. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328PubMedCrossRefGoogle Scholar
  37. Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial-type tomatoes. Proc Am Soc Hort Sci 68:437–442Google Scholar
  38. Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol 4:301–308PubMedCrossRefGoogle Scholar
  39. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  40. Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gururani MA, Jelli V, Upadhyaya CP, Akula N, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65CrossRefGoogle Scholar
  42. Hammond–Kosack KE, Jones JDG (1996) Inducible plant defense mechanisms and resistance gene function. Plant Cell 8:1773–1791PubMedPubMedCentralCrossRefGoogle Scholar
  43. Heath MC (2000) Non host resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319PubMedCrossRefGoogle Scholar
  44. Inohara C, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383PubMedCrossRefGoogle Scholar
  45. Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281e7CrossRefGoogle Scholar
  47. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  48. Jones DA, Jones JDG (1997) The role of leucine rich repeat proteins in plant defenses. Adv Bot Res Inc Adv Plant Pathol 24:120e7Google Scholar
  49. Joshi RK, Nayak S (2011) Functional characterization and signal transduction ability of nucleotide- binding site-leucine-rich repeat resistance genes in plants. Genet Mol Res 10(4):2637–2652PubMedCrossRefGoogle Scholar
  50. Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localization of the NB-LRR gene family within the potato genome. BMC Genomics 13:75PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JD (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kajava AW (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277:519–527PubMedCrossRefGoogle Scholar
  53. Kaloshian I (2004) Gene of gene disease resistance: breeding insect pest and pathogen defense. J Chem Ecol 30:2419–2438PubMedCrossRefGoogle Scholar
  54. Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463PubMedCrossRefGoogle Scholar
  55. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, Van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278PubMedCrossRefGoogle Scholar
  56. Kobe B, Kajava AV (2000) When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci 25:509–515PubMedCrossRefGoogle Scholar
  57. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636PubMedCrossRefGoogle Scholar
  58. Lawrence JG, Finnegan EJ, Ayliffe MA, Ellisai JG (1995) The L6 gene for flax rust resistance 1s related to the Arabidopsis bacterial resistance gene RPSP and the tobacco vira1 resistance gene N. Plant Cell 7:1195e206CrossRefGoogle Scholar
  59. Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17:1268–1278PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu J, Coaker G (2008) Nuclear trafficking during plant innate immunity. Mol Plant 1:411–422PubMedCrossRefGoogle Scholar
  61. Lukasik-Shreepaathy E, Vossen JH, Tameling WIL, De Vroomen MJ, Cornelissen BJC, Takken FLW (2012) J Exp Bot 63(8):3047–3060PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mackey D, Holt BFI, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754PubMedCrossRefGoogle Scholar
  63. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8(1):124Google Scholar
  64. Mayerhofer H, Sautron E, Rolland N, Catty P, Seigneurin-Berny D, Pebay-Peyroula E, Stéphanie R (2016) Structural insights into the nucleotide-binding domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana. PLoS One 11(11):e0165666PubMedPubMedCentralCrossRefGoogle Scholar
  65. McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183PubMedCrossRefGoogle Scholar
  66. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212.1–212.11CrossRefGoogle Scholar
  67. Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18:491–501PubMedPubMedCentralCrossRefGoogle Scholar
  68. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J 20:317–332PubMedCrossRefGoogle Scholar
  69. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NB-LRR encoding genes in Arabidopsis. Plant Cell 15(4):809–834PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134PubMedCrossRefGoogle Scholar
  71. Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE (1990) Gene- for-gene relationships specifying disease resistance in Xanthomonas campestris pv vesicatoria – pepper interactions. Mol Plant-Microbe Int 3:41–47Google Scholar
  72. Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519PubMedPubMedCentralCrossRefGoogle Scholar
  73. Morel J, Dangl J (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671e83CrossRefGoogle Scholar
  74. Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene mediated defenses against multiple pathogens. Plant Cell 14:979–992PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nandety RS, Caplan JL, Cavanaugh K, Perroud B, Wroblewski T, Michelmore RW, Meyers BC (2013) The role of TIRNBS and TIR-X proteins in plant basal defense responses. Plant Physiol 162:1459–1472PubMedPubMedCentralCrossRefGoogle Scholar
  76. Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K (2005) A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 43:873–888PubMedCrossRefGoogle Scholar
  77. Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449e60CrossRefGoogle Scholar
  78. Ooijen VG, Mayr G, Albrecht M, Cornelissen BJC, Takken FLW (2008) Transcomplementation, but not physical association of the CC-NBARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol Planta 1:401–410CrossRefGoogle Scholar
  79. Panda N, Khush GS (1995) Host plant resistance to insects. CAB Int, Wallingford, p 431Google Scholar
  80. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMedCrossRefGoogle Scholar
  81. Quisenberry SS, Clement SL (2002) Conservation and use of global plant genetic resources for insect resistance. Aust J Agric Res 53:865–872CrossRefGoogle Scholar
  82. Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009) In the trenches of plant pathogen recognition: role of NB-LRR proteins. Semin Cell Dev Biol 20:1017–1024PubMedCrossRefGoogle Scholar
  83. Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093PubMedPubMedCentralCrossRefGoogle Scholar
  84. Reinink K, Dieleman FL (1989) Comparison of sources of resistance to leaf aphids in lettuce (L. sativa L.) Euphytica 40:21–29Google Scholar
  85. Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933PubMedCrossRefGoogle Scholar
  86. Rosello S, Diez MJ, Nuez F (1998) Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509CrossRefGoogle Scholar
  87. Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant-Microbe Interact 23:497–509PubMedCrossRefGoogle Scholar
  88. Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman AH, Fahima T (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol 13:276–287PubMedCrossRefGoogle Scholar
  89. Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus- specific manner. Proc Natl Acad Sci U S A 103:11856–11861PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, Chen JQ (2014) Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol 166:217–234PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 70:01487Google Scholar
  92. Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC, Michelmore RW (2002) Dm3 is one member of a large constitutively-expressed family of NBS-LRR encoding genes. Mol Plant-Microbe Int 15:251–261CrossRefGoogle Scholar
  93. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 180:4–6Google Scholar
  94. Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X (2017) Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One 12(2):e0171181PubMedPubMedCentralCrossRefGoogle Scholar
  95. Stange C, Matus JT, Domínguez C, Perez-Acle T, Arce-Johnson P (2008) The N-homologue LRR domain adopts a folding which explains the TMVCg- induced HR-like response in sensitive tobacco plants. J Mol Graph Model 26:850–860PubMedCrossRefGoogle Scholar
  96. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100(117):77–82Google Scholar
  97. Takken FW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:1–10CrossRefGoogle Scholar
  98. Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390PubMedCrossRefGoogle Scholar
  99. Tameling WIL, Elzinga SDP, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and Mi-1 are functional ATP bindingproteins with ATPase activity. Plant Cell 14(11):2929–2939PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tameling WIL, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJC, Takken FLW (2006) Mutations in the NBARC domain of I-2 that impair ATP hydrolysis cause auto activation. Plant Physiol 140:1233–1245PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tarr DEK, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197PubMedPubMedCentralCrossRefGoogle Scholar
  102. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68PubMedCrossRefGoogle Scholar
  103. Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypesensitive response in tobacco plants. Plant Mol Biol 61:31–45PubMedCrossRefGoogle Scholar
  104. Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498PubMedCrossRefGoogle Scholar
  105. Urbach MJ, Ausubel MF (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci U S A 114(5):1063–1068Google Scholar
  106. Van den Ackerveken GF, Van Kan JA, De Wit PJGM (1992) Molecular analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2:359–366Google Scholar
  107. Van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R228PubMedCrossRefGoogle Scholar
  108. Van der Hoorna RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20(8):2009–2017CrossRefGoogle Scholar
  109. Van der Voort JR, Kanyuka K, Van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp. andigena CPC1673 into cultivated potato. Mol Plant-Microbe Int 12:197–206CrossRefGoogle Scholar
  110. Van der Vossen EA, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema WJ, Allefs S (2003) An ancient R-gene from the wild species Solanum bulbocastanum confers broad- spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  111. Venter V, Botha AM (2000) Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR-RFLP approach. Theor Appl Genet 100:965–970CrossRefGoogle Scholar
  112. Wan H, Yuan W, Ye Q, Wang R, Ruan M, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2012) Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genomics 13:502PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang CIA, Gunčar G, Forwood JK, Teh T, Catanzariti AM, Lawrence GJ, Loughlin FE, Mackay JP, Schirra HJ, Anderson PA, Ellis JG, Dodds PN, Kobe B (2007) Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19(9):2898–2912Google Scholar
  114. Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad spectrum resistance to powdery mildew. Plant Cell 21(9):2898–2913Google Scholar
  115. Wani SH (2010) Inducing fungus-resistance into plants through biotechnology. Not Sci Biol 2(2):14–21Google Scholar
  116. Watts VM (1947) The use of Lycopersicon peruvianum as a source nematode resistance in tomatoes. Proc Am Soc Hort Sci 49:233–234Google Scholar
  117. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, Casey LW, Lonhienne T, Winzor DJ, Zhang X, Coerdt A, Parker JE, Dodds PN, Kobe B, Jones JD (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303PubMedCrossRefGoogle Scholar
  118. Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403PubMedCrossRefGoogle Scholar
  119. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120PubMedCrossRefGoogle Scholar
  120. Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42(1):95–110PubMedCrossRefGoogle Scholar
  121. Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 5:393–422CrossRefGoogle Scholar
  122. Young BJD, Roger WI (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249CrossRefGoogle Scholar
  123. Zhang YM, Shao ZQ, Wang Q, Hang YY, Xue JY, Wang B, Chen JQ (2016) Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J Integr Plant Biol 58:165–177PubMedCrossRefGoogle Scholar
  124. Zhong Y, Yin H, Sargent DJ, Malnoy M, Cheng ZM (2015) Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics 16(1):77Google Scholar
  125. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415CrossRefGoogle Scholar
  126. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci 102(43):15383–15388Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Molecular Plant Pathology Laboratory, Division of BiotechnologyCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations