Skip to main content

Plant–Virus Interactions

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

Viruses are small pathogens not visible under light microscope and are causal agents for many common plant diseases. They lead to heavy economic losses in crop production and quality in different parts of the world. The simplest viruses are composed of nucleic acid and protein coat. Plant viruses mostly have single-stranded ribonucleic acid (ssRNA), but in few cases single- or double-stranded DNA may also be present. They are obligate parasites and require host machinery for their reproduction. They make their passive entry into plant cells through the wounds caused by either physical injuries, through environmental factors, or by the vectors which could be insects, nematodes, fungi, and even mites. Viral RNA disassembles, replicates, and converts its mRNA to proteins in the host cytoplasm using energy and proteins from the host cell. Once viruses enter the host, they move from infected cells to healthy neighboring cells locally. Long-distance transport via the vascular system for systemic infection is also the key feature of plant viruses. In response to the infection by viruses, plants also develop certain defense mechanisms. In this chapter the aspects related to movement of viruses in plant system, general response of plants to viruses, defense mechanisms developed by the plant like RNA silencing, virus-encoded suppressor proteins, development of disease-free tissues, and future aspects are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranda MA, Escaler M, Wang D, Maule AJ (1996) Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A 93:15289–11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baebler S, Witek K, Petek M, Stare K, TusekZnidaric M, Pompe Novak M (2014) Salicylic acid is an indispensable component of the Ny-1 resistance gene-mediated response against potato virus Y infection in potato. J Exp Bot 65:1095–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: ‘talking trees’ in the genomics era. Science 311:812–814

    Article  CAS  PubMed  Google Scholar 

  • Baughman GA, Jacobs JD, Howell SH (1988) Cauliflower mosaic-virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc Natl Acad Sci 85:733–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boualem A, Dogimont C, Bendahmane A (2016) The battle for survival between viruses and their host plants. Curr Opin Virolol 17:32–38

    Article  CAS  Google Scholar 

  • Brown J (2015) Durable resistance of crops to disease: a Darwinian perspective. Annu Rev Phytopathol l53:513–539

    Google Scholar 

  • Carrington JC (2000) RNA silencing – moving targets. Nature 408:150–151

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2010) Small RNAs-secrets and surprise of the genome. Plant J 61:941–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky (2005) Effects of calreticulin on viral cell to cell movement. Plant Physiol 138:1866–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Article  CAS  PubMed  Google Scholar 

  • Culver JN (2002) Tobacco mosaic virus assembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287–308

    Article  CAS  PubMed  Google Scholar 

  • Dandekar AM, Martinelli F, Davis CE, Bhushan A, Zhao W, Fiehn O, Skogerson K, Wohlgemuth G, D’Souza R, Roy S, Reagan RL, Lin D, Bruce Cary R, Pardington P, Gupta G (2010) Analysis of early host responses for asymptomatic disease detection and management of specialty crops. Crit Rev Immunol 30:277–289

    Article  CAS  PubMed  Google Scholar 

  • Dardick C (2007) Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 20:1004–1017

    Article  CAS  PubMed  Google Scholar 

  • Davino S, Napoli C, Davino M, Accotto GP (2006) Spread of tomato yellow leaf curl virus: partial displacement of another geminivirus originally present. Eur J Plant Pathol 114:293–299

    Article  Google Scholar 

  • Dekker EL, Derkes FLM, Asjes CJ, Lemmers MEC, Bol JF, Langeveld SA (1993) Characterization of potyviruses from tulip and lily which cause flower breaking. J Gen Virol 79:881–887

    Article  Google Scholar 

  • Denance N, Sanchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:1–12. Article155

    Article  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietzgen RG, Mann KS, Johnson KN (2016) Plant virus insect vector interaction: current and potential future research directions. Virus 8:303

    Article  Google Scholar 

  • Dorokhov YL, Komarova TV (2016) Volatile organic compounds and plant virus–host interaction. In: Gaur RK, Hohn T, Sharma P (eds) Plant virus host interaction: molecular approaches and viral evolution. Academic (Elsevier Inc), Amsterdam/Heidelberg, pp 1–16

    Google Scholar 

  • Dorokhov YL, Mäkinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) Anovel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaicvirus movement protein. FEBS Lett 461:223–228

    Google Scholar 

  • Doumayrou J, Leblaye S, Froissart R, Michalakis Y (2013) Reduction of leaf area and symptom severity as proxies of disease-induced plant mortality the example of the cauliflower mosaic virus infecting two Brassicaceae hosts. Virus Res 176:91–100

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Voinnet (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  CAS  PubMed  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18:67–75

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser RSS, Whenham RJ (1989) Abscisic-acid metabolism in tomato plants infected with tobacco mosaic virus relationships with growth, symptoms and the Tm-1 gene for Tmv resistance. Physiol Mol Plant Pathol 34:215–226

    Article  CAS  Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. MPMI 16:132–140

    Article  CAS  PubMed  Google Scholar 

  • Hafren A, Hofius D, Ronnholm G, Sonnewald U, Makinen K (2010) HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant Cell 22:523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viralmovement proteinstraffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Google Scholar 

  • Havelda Z, Várallyay É, Válóczi A, Burgyán J (2008) Plant virus infection-induced persisitent host genedownregulation in systemically infected leaves. Plant J 55:278–288

    Google Scholar 

  • Heinlein M (2015) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217:25–52

    Article  CAS  PubMed  Google Scholar 

  • Holmes FO (1929) Local lesions in tobacco mosaic. Bot Gazzet 87:39–55

    Article  Google Scholar 

  • Holopainen JK, Blande JD (2012) Molecular plant volatile communication. Adv Exp Med Biol 739:17–31

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Andrianov VM, Han Y, Howell SH (2001) Identification of Arabidopsis proteins that interact with thecauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47:663–675

    Google Scholar 

  • Hull R (2009) Overview of plant viruses. In: Hull (ed) Comparative plant virology, 2 nd edn. Elsevier, Oxford

    Google Scholar 

  • Islam W, Zhang J, Adnan M, Noman A, Zaynab M, Wu Z (2017) Plant virus ecology: a glimpse of recent accomplishments. Appl Ecol Environ Res 15(1):691–705

    Article  Google Scholar 

  • Jameson P (2000) Cytokinins and auxins in plant-pathogen interactions-an overview. Plant Growth Regul 32:369–380

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kawamura-Nagaya K, Ishibashi K, Huang YP, Miyashita S, Ishikawa M (2014) Replication protein of Tobacco mosaic virus cotranslationally binds 5 untranslated region of genomic RNA to enable viral replication. Proc Natl Acad Sci U S A 111:e1620–e1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  CAS  PubMed  Google Scholar 

  • Khan AJ, Akhtar S, Mansoor S, Amin I (2014) Engineering crops for resistance to geminiviruses. In: Gaur RK, Hohn T, Sharma P (eds) Plant virus host interaction: molecular approaches and viral evolution. Academic (Elsevier Inc), Oxford, pp 1–16

    Google Scholar 

  • Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabo EV, Gillespie T, Haupt S, JWS B, Taliansky M (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required forsystematic virus infection. Proc Na Acad Sci U S A 104:11115–11120

    Google Scholar 

  • Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JWS, Taliansky M (2007b) Cajal bodies and the nucleous are required for a plant virus systemic infection. EMBO J 26:2169–2179

    Google Scholar 

  • Kiraly Z, Hafez MY, Fodor J, Kiraly Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxidase and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808

    Article  CAS  PubMed  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W et al (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) Mpb2c, a microtubule-associated plant protein binds to and interferes with cell to cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laliberte JF, Sanfac (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gonzalez PA, Sasvari Z, Kinzy TG, Nagy PD (2014) Methylation of translation elongation factor1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 448:43–54

    Article  CAS  PubMed  Google Scholar 

  • Lima JAA, Nascimento AKQ, Radaelli P, Purcifull DE (2012) Serology applied to plant virology. In: Molish-Al-Moslih M (ed) Serological diagnosis of certain human, animal and plant diseases. InTech, Rijekax, pp 71–94

    Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. PNAS 23:3600–3605

    Article  Google Scholar 

  • Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33

    Article  CAS  PubMed  Google Scholar 

  • Moreno IM, Bernal JJ, de Garcia B, Rodriguez-Cerezo E, Garcia-Arenal F (1997) The expression level of the 3a movement of protein determines differences in severity of symptoms between two strains of tomato aspermy cucumovirus. Mol Plant-Microbe Interact 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Mumford RA, Walsh K, Barker I, Boonham N (2000) Detection of Potato mop top virus and Tobacco rattle virus using multiplex real-time X fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90:448–453

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2012) The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10:137–149

    Article  CAS  Google Scholar 

  • Nakahara KS, Masuta C (2014) Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr Opin Plant Biol 20:88–95

    Article  CAS  PubMed  Google Scholar 

  • Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F (2012) Viroids: how to infect a host and cause disease without encoding proteins. Biochimie 94:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Neeleman L, VanDerKuyl AC, Bol JF (1991) Role of alfalfa mosaic virus coat protein gene in symptom formation. Virology 181:687–693

    Article  CAS  PubMed  Google Scholar 

  • Nelson RS, Citovsky V (2005) Plant viruses invaders of cells and pirates of cellular pathways. Plant Physiol 138:1809–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni P, Cheng Kao C (2013) Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology 446:123–132

    Article  CAS  PubMed  Google Scholar 

  • Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant-Microbe Interact 10:709–715

    Article  CAS  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the tobacco mosaic virus replicase protein with AUX/IAA protein PAP1/IAA 26 is associated with disease development. J Virol 79:2549–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallas V, Garc’ıa JA (2011) How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 92:2691–2705

    Article  CAS  PubMed  Google Scholar 

  • Pallas V, Genoves A, Sánchez-Pina MA, Navarro JA (2011) Systemic movement of viruses via the plant phloem. In: Caranta C, Aranda MA, Tepfer M, López-Moya JJ (eds) Advances in plant virology. Caister Academic Press, Norwich, p 470

    Google Scholar 

  • Panavas, Serviene E, Brasher J, Nagy PD (2005) Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 102:7326–7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Ni and Kao CC (2013) Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses.Virology 446: 123–132

    Google Scholar 

  • Petty ITD, Edwards MC, Jackson AO (1990) Systemic movement of an RNA plant virus determined by a point substitution in a 59 leader sequence. Proc Natl Acad Sci U S A 87:8894–8897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Noil JP, Dudareva N (2006) Biosynthesis of plant volatiles; nature’s diversity and ingenuity. Science 311(5762):801–811

    Article  Google Scholar 

  • Prendeville HR, Tenhumberg B, Pilson D (2014) Effects of virus on plant fecundity and population dynamics. New Phytol 202:1346–1356

    Article  PubMed  Google Scholar 

  • Purcifull DE, Hiebert E, Petersen M, Webb S (2001) Virus detection serology. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 1100–1109

    Google Scholar 

  • Qu F, Ye X, Mortis TJ (2008) Arabidopsis DRB4, AGO1, AGO7 and RDR6 participate in a DCL4-intiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Nat Acad Sci U S A 105:14732–14737

    Article  CAS  Google Scholar 

  • Rahoutei J, García Luque, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292

    Article  CAS  Google Scholar 

  • Rathjen JP, Moffett P (2003) Early signal transduction events in specific plant disease resistance. Curr Opin Plant Biol 6:300–306

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensink WA, Lee Y, Liu J, Iobst S, Ouyan S, Buell CR (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts PL, Wood KR (1982) Effects of a severe (P6) and a mild (W) strain of cucumber mosaic virus on tobacco leaf chlorophyll, starch and cell ultrastructure. Physiol Plant Pathol 21:31–37

    Article  CAS  Google Scholar 

  • Roossinck MJ, Garcia Arenal F (2015) Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 10:56–62

    Article  PubMed  Google Scholar 

  • Saenz P, Salvador B, Simon-Mateo C, Kasschau KD, Carrington JC, Garcia JA (2002) Host-specific involvement of the HC protein in the long-distance movement of potyviruses. J Virol 76:1922–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stange C (2006) Plant-virus interactions during the infective process. Cien Inv Agr 33(1):1–18

    Google Scholar 

  • Stapleford KA, Miller DJ (2010) Role of cellular lipids in positive-sense RNA virus replication complex assembly and function. Viruses 2:1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stobbe AH, Roossinck MJ (2014) Plant virus metagenomics what we know and why we need to know more. Front Plant Sci 5:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100

    Article  CAS  PubMed  Google Scholar 

  • Takacs A, Horvath J, Gaborjanyi R, Mikulas J (2014) Hosts and non-hosts in plant virology and the effects of plant viruses on host plants. In: Gaur RK, Hohn T, Sharma P (eds) Plant virus host interaction: molecular approaches and viral evolution. Academic (Elsevier Inc), Amsterdam/Heidelberg, pp 1–16

    Google Scholar 

  • Taraporewala ZF, Culver JN (1997) Structural and functional conservation of the tobamovirus coat protein elicitor active site. Mol Plant-Microbe Interact 10:597–604

    Article  CAS  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Ueki S, Spektor R, Natale DM, Citovsky V (2010) ANK, a host cyptoplasmic receptor for the tobacco mosaicvirus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. PLoS Pathog 6:e1001201

    Google Scholar 

  • Valli A, López-Moya JJ, Garcıa JA (2009) RNA silencing and its suppressors in the plant-virus interplay. Wiley, Chichester

    Book  Google Scholar 

  • Verchot J (2012) Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front Plant Sci 3:1–12. Article 275

    Article  Google Scholar 

  • Vuorinen AL, Kelloniemi J, Valkonen JP (2011) Why do viruses need phloem for systemic invasion of plants? Plant Sci 181:355–363

    Article  CAS  PubMed  Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of non-destructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    Article  CAS  Google Scholar 

  • Wallis CM, Stone AL, Sherman DJ, Damsteegt VD, Gildow FE, Schneider WL (2007) Adaptation of plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J Gen Virol 88:2839–2845

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13:795–803

    Article  CAS  PubMed  Google Scholar 

  • Whitham SA, Yang C, Gooding MM (2006) Global impact: elucidating plant responses to viral infection. MPMI 19(11):1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Jackson D (2010) Lights at the end of the tunnel: new views of plasmodesmatal structure and function. Curr Opin Plant Biol 13(6):684–692

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hajimorad MR, Eggenberger AL, Tsang S, Whitham SA, Hill JH (2009) Cytoplasmic inclusion cistron of soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. Virology 391:240–248

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhang X, Hong Y, Liu Y (2016) Chloroplast in plant virus interaction. Front Microbiol 7:1–20

    Google Scholar 

  • Zhu T, Chang HS, Schmeitz J, Gil P, Shi L, Budworth PR, Zhou H, Chen C, Wang X (2001) Gene expression microarrays: improvements and applications towards agricultural gene discovery. JALA 6:95–98

    CAS  Google Scholar 

  • Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y (2005) The Rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju K. Chhibbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Chhibbar, A.K. (2018). Plant–Virus Interactions. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_3

Download citation

Publish with us

Policies and ethics