Advertisement

Explorations of Plant’s Chemodiversity: Role of Nitrogen-Containing Secondary Metabolites in Plant Defense

  • Sanjay Kumar Singh
Chapter

Abstract

In nature, plants are surrounded by a number of biotic and abiotic environmental stresses. Biotic ecosystems contain a wide variety of bacteria, viruses, fungi, nematodes, mites, insects, mammals, and other herbivorous animals, greatly responsible for heavy reduction in crop productivity. Henceforth, to cope up from these biotic stresses, the plant defense mechanism increasingly requires the availability of large numbers of phytochemicals. Chemodiversity in plants offers a valuable source; for example, nitrogen-containing secondary metabolites, previously regarded as waste products, are now recognized for their resistant activity against herbivores, pests, pathogens, and diseases. In this chapter, I have described the increasing role of nitrogen-containing secondary metabolites during plant defense. These metabolites impose their effects by acting as deterrence/antifeedant, toxicity, or precursors to physical defense systems. Many specialized herbivores and pathogens do not merely circumvent the deterrent or toxic effects of secondary metabolites but actually utilize these compounds as host recognition signals and/or nutrients. This is true for both cyanogenic glucosides and glucosinolates which are discussed in detail. Their biochemical and molecular mechanism of action is compared and contrasted.

Keywords

Secondary metabolites Plant defense Pathogen Herbivores 

References

  1. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085–1092CrossRefPubMedGoogle Scholar
  2. Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49(3):1410–1416CrossRefPubMedGoogle Scholar
  3. Alborn H, Stenhagen G, Leuschner K (1992) Biochemical selection of sorghum crop varieties resistant to sorghum shoot fly (Atherigona soccata) and stem borer (Chilo partellus): role of allelochemicals. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Springer, Dordrecht, pp 101–117Google Scholar
  4. Andersen SO (2010) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40(3):166–178Google Scholar
  5. Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released frombrassica roots inhibit growth of the take-all fungus. Plant Soil 162(1):107–112Google Scholar
  6. Anilakumar K, Khanum F, Bawa A (2006) Dietary role of glucosinolate derivatives: a review. J Food Sci Technol-Mysore 43(1):8–17Google Scholar
  7. Aronson JN, Wermus GR (1965) Effects of m-tyrosine on growth and sporulation of Bacillus species. J Bacteriol 90(1):38–46Google Scholar
  8. Arteca JM, Arteca RN (2001) Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants. Physiol Plant 112(1):104–112Google Scholar
  9. Ballhorn DJ (2011) Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.) J Chem Ecol 37(2):141–144Google Scholar
  10. Ballhorn DJ, Lieberei R, Ganzhorn JU (2005) Plant cyanogenesis of Phaseolus lunatusand its relevance for herbivore–plant interaction: the importance of quantitative data. J Chem Ecol 31(7):1445–1473Google Scholar
  11. Barbehenn RV, Peter Constabel C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565Google Scholar
  12. Bell EA (2003) Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51(10):2854–2865Google Scholar
  13. Bell EA, Lackey JA, Polhill RM (1978) Systematic significance of canavanine in the Papilionoideae (faboideae). Biochem Syst Ecol 6(3):201–212Google Scholar
  14. Benavente-Garcia O, Castillo J, Lorente J, Ortuño A, Del Rio JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68(4):457–462Google Scholar
  15. Berge MA, Rosenthal GA, Dahlman DL (1986) Tobacco budworm, Heliothis virescens[Noctuidae] resistance to l-canavanine, a protective allelochemical. Pestic Biochem Physiol 25(3):319–326Google Scholar
  16. Bertin C, Weston LA, Huang T, Jander G, Owens T, Meinwald J, Schroeder FC (2007) Grass roots chemistry: meta-tyrosine, an herbicidal non-protein amino acid. Proc Natl Acad Sci 104(43):16964–16969Google Scholar
  17. Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35(2):301–305Google Scholar
  18. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95(8):4126–4133CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brattsten LB, Samuelian JH, Long KY, Kincaid SA, Evans CK (1983) Cyanide as a feeding stimulant for the southern army worm, Spodoptera eridania. Ecol Entomol 8(2):125–132Google Scholar
  20. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333CrossRefPubMedGoogle Scholar
  21. Bunawan NC, Rastegar A, White KP, Wang NE (2014) Djenkolism: case report and literature review. Int Med Case Rep J 7:79–84Google Scholar
  22. Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd El Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA (1993) Current status and future strategy in breeding grasspea (Lathyrus sativus). Euphytica 73(1):167–175Google Scholar
  23. Chakraborty A, Chowdhury BK, Bhattacharyya P (1995a) Clausenol and clausenine—two carbazole alkaloids from Clausena anisata. Phytochemistry 40(1):295–298Google Scholar
  24. Chakraborty A, Saha C, Podder G, Chowdhury BK, Bhattacharyya P (1995b) Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry 38(3):787–789Google Scholar
  25. Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem 272(48):30129–30134CrossRefPubMedGoogle Scholar
  26. Chiu FL, Lin JK (2008) Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett 582(16):2407–2412Google Scholar
  27. Cordell GA (2000) Biodiversity and drug discovery—a symbiotic relationship. Phytochemistry 55(6):463–480CrossRefPubMedGoogle Scholar
  28. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695Google Scholar
  29. D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8(3):308–316Google Scholar
  30. De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336(6089):1658–1661Google Scholar
  31. del Carmen M-BM, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625Google Scholar
  32. Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27Google Scholar
  33. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336Google Scholar
  34. Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847CrossRefPubMedGoogle Scholar
  35. Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38(2):347–350Google Scholar
  36. Eisler R (1991) Cyanide hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Department of the Interior, Fish and Wildlife Service, LaurelGoogle Scholar
  37. Ellsbury M, Pederson G, Fairbrother T (1992) Resistance to foliar-feeding Hyperine weevils (coleoptera: Curculionidae) in cyanogenic white clover. J Econ Entomol 85(6):2467–2472Google Scholar
  38. Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.) J Agric Food Chem 54(2):328–334Google Scholar
  39. Erdemoglu N, Ozkan S, Tosun F (2007) Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev 6(1):197–201Google Scholar
  40. Erdemoglu N, Ozkan S, Duran A, Tosun F (2009) GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii. Pharm Biol 47(1):81–85Google Scholar
  41. Ernesto M, Cardoso AP, Nicala D, Mirione E, Massaza F, Cliff J, Haque MR, Bradbury JH (2002) Persistent konzo and cyanogen toxicity from cassava in northern Mozambique. Acta Trop 82(3):357–362CrossRefPubMedGoogle Scholar
  42. Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54(4):763–784Google Scholar
  43. Farnsworth NR (1988) Screening plants for new medicines. Biodiversity 1:83–97Google Scholar
  44. Fleming FF (1999) Nitrile-containing natural products. Nat Prod Rep 16(5):597–606CrossRefGoogle Scholar
  45. Fletcher M, Al Jassim R, Cawdell-Smith A (2015) The occurrence and toxicity of Indospicine to grazing animals. Agriculture 5(3):427CrossRefGoogle Scholar
  46. Fowden L (1963) Amino-acid analogues and the growth of seedlings. J Exp Bot 14(3):387–398CrossRefGoogle Scholar
  47. Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50(21):5751–5780CrossRefPubMedGoogle Scholar
  48. Gallot A, Rispe C, Leterme N, Gauthier J-P, Jaubert-Possamai S, Tagu D (2010) Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Mol Biol 40(3):235–240Google Scholar
  49. Ganjewala D, Kumar S, Devi S, Ambika K (2010) Advances in cyanogenic glycosides biosynthesis and analyses in plants: a review. Acta Biologica Szegediensis 54(1):1–14Google Scholar
  50. Gershenzon J, Croteau R (1992) Terpenoids. In: Herbivores: their interactions with secondary plant metabolites, The chemical participants, vol 1, 2nd edn. Academic, San Diego, pp 165–219Google Scholar
  51. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126(2):347–363Google Scholar
  52. Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93(5–6):1006–1010CrossRefPubMedGoogle Scholar
  53. Gleadow RM, Woodrow IE (2000) Polymorphism in cyanogenic glycoside content and cyanogenic β-glucosidase activity in natural populations of Eucalyptus cladocalyx. Funct Plant Biol 27(7):693–699CrossRefGoogle Scholar
  54. González-García M-P, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859Google Scholar
  55. González-Lamothe R, Mitchell G, Gattuso M, Diarra M, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10(8):3400CrossRefPubMedPubMedCentralGoogle Scholar
  56. Graser G, Schneider B, Oldham NJ, Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa(Brassicaceae). Arch Biochem Biophys 378(2):411–419Google Scholar
  57. Gurer-Orhan H, Ercal N, Mare S, Pennathur S, Orhan H, Heinecke JW (2006) Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem J 395(2):277–284Google Scholar
  58. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefPubMedGoogle Scholar
  59. Haque MR, Bradbury JH (2002) Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem 77(1):107–114CrossRefGoogle Scholar
  60. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207(4):483–495Google Scholar
  61. Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Biosynthesis: aromatic polyketides, isoprenoids, alkaloids. Springer, Berlin/Heidelberg, pp 207–243Google Scholar
  62. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129Google Scholar
  63. Hasegawa T, Yamada K, Kosemura S, Yamamura S, Hasegawa K (2000) Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls. Phytochemistry 54(3):275–279Google Scholar
  64. Hirayama C, Konno K, Wasano N, Nakamura M (2007) Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx morito mulberry defense. Insect Biochem Mol Biol 37(12):1348–1358Google Scholar
  65. Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22(4):273–292CrossRefGoogle Scholar
  66. Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72(13):1531–1537Google Scholar
  67. Huang T, Rehak L, Jander G (2012) Meta-tyrosine inFestuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry 75:60–66Google Scholar
  68. Huh J, Liepins A, Zielonka J, Andrekopoulos C, Kalyanaraman B, Sorokin A (2006) Cyclooxygenase 2 rescues LNCaP prostate cancer cells from sanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity. Cancer Res 66(7):3726–3736CrossRefPubMedGoogle Scholar
  69. Ince PG, Codd GA (2005) Return of the cycad hypothesis – does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol 31(4):345–353Google Scholar
  70. Ishaaya I, Hirashima A, Yablonski S, Tawata S, Eto M (1991) Mimosine, a nonprotein amino acid, inhibits growth and enzyme systems in Tribolium castaneum. Pestic Biochem Physiol 39(1):35–42Google Scholar
  71. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19(8):603–608CrossRefGoogle Scholar
  72. Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) Alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581(17):3217–3222Google Scholar
  73. Iwasa K, Moriyasu M, Tachibana Y, Kim H-S, Wataya Y, Wiegrebe W, Bastow KF, Cosentino LM, Kozuka M, Lee K-H (2001) Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorg Med Chem 9(11):2871–2884Google Scholar
  74. Janzen DH, Juster HB, Arthur Bell E (1977) Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus. Phytochemistry 16(O):223–227Google Scholar
  75. Jeng J-H, Wu H-L, Lin B-R, Lan W-H, Chang H-H, Ho Y-S, Lee P-H, Wang Y-J, Wang J-S, Chen Y-J (2007) Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 191(2):250–258CrossRefPubMedGoogle Scholar
  76. Kadow D, Voß K, Selmar D, Lieberei R (2012) The cyanogenic syndrome in rubber tree Hevea brasiliensis: tissue-damage-dependent activation of linamarase and hydroxynitrile lyase accelerates hydrogen cyanide release. Ann Bot 109:1253. mcs057CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:9Google Scholar
  78. Kaur S, Gupta SK, Sukhija PS, Munshi SK (1990) Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur application. Plant Sci 66(2):181–184Google Scholar
  79. Kiddle GA, Doughty KJ, Wallsgrove RM (1994) Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. J Exp Bot 45(9):1343–1346Google Scholar
  80. Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49(6):1008–1019Google Scholar
  81. Kitajima T, Chiba Y (2013) Selenomethionine metabolism and its toxicity in yeast. Biomol Concepts 4(6):611–616CrossRefPubMedGoogle Scholar
  82. Klipcan L, Moor N, Kessler N, Safro MG (2009) Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine. Proc Natl Acad Sci U S A 106(27):11045–11048Google Scholar
  83. Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195(2):309–318Google Scholar
  84. Kuete V, Wansi JD, Mbaveng AT, Kana Sop MM, Tadjong AT, Beng VP, Etoa FX, Wandji J, Meyer JJM, Lall N (2008) Antimicrobial activity of the methanolic extract and compounds fromTeclea afzelii (Rutaceae). S Afr J Bot 74(4):572–576Google Scholar
  85. Kuwahata H, Katsuyama S, Komatsu T, Nakamura H, Corasaniti MT, Bagetta G, Sakurada S, Sakurada T, Takahama K (2012) Local peripheral effects of β-Caryophyllene through CB 2 receptors in neuropathic pain in mice. Pharmacol Pharm 3(04):397CrossRefGoogle Scholar
  86. Lambein F, Kuo Y-H, Ikegami F, Murakoshi I (1990) Toxic and non-toxic nonprotein amino acids in the Vicieae. In: Amino acids. Springer, pp 21–28Google Scholar
  87. Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry Adv Res 661:23–67Google Scholar
  88. Lee S-J, Umano K, Shibamoto T, Lee K-G (2005) Identification of volatile components in basil (Ocimum basilicumL.) and thyme leaves (Thymus vulgarisL.) and their antioxidant properties. Food Chem 91(1):131–137Google Scholar
  89. Legault J, Côté P-A, Ouellet S, Simard S, Pichette A (2013) Iso-caryophyllene cytotoxicity induced by lipid peroxidation and membrane permeabilization in L-929 cells. J Appl Pharma Sci 3:25Google Scholar
  90. Li Y, Kiddle G, Bennett RN, Wallsgrove RM (1999) Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica nap us L.) after inoculation with Sclerotinia sclerotiorum (stem rot). Ann Appl Biol 134(1):45–58Google Scholar
  91. Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania onBrassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26(10):2401–2419Google Scholar
  92. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65Google Scholar
  93. Ma W, Fukushi Y, Tahara S (1999) Fungitoxic alkaloids from Hokkaido Corydalis species. Fitoterapia 70(3):258–265Google Scholar
  94. Malagon J, Garrido A (1990) Relation between cyanogenic glycosides content and the resistance to Capnodis tenebrionis(L.) in stone fruits. Boletín de Sanidad Vegetal, Plagas 16(2):499–503Google Scholar
  95. Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16(1):77–84CrossRefPubMedGoogle Scholar
  96. Maneerat W, Phakhodee W, Ritthiwigrom T, Cheenpracha S, Promgool T, Yossathera K, Deachathai S, Laphookhieo S (2012) Antibacterial carbazole alkaloids from Clausena harmandiana twigs. Fitoterapia 83(6):1110–1114Google Scholar
  97. Mari M, Leoni O, Iori R, Cembali T (2002) Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillium expansum on pears. Plant Pathol 51(2):231–236Google Scholar
  98. Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8(1):13–25Google Scholar
  99. McSweeney C, Collins E, Blackall L, Seawright A (2008) A review of anti-nutritive factors limiting potential use of Acacia angustissima as a ruminant feed. Anim Feed Sci Technol 147(1):158–171Google Scholar
  100. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162Google Scholar
  101. Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67(22):2450–2462Google Scholar
  102. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751PubMedGoogle Scholar
  103. Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450CrossRefPubMedGoogle Scholar
  104. Mori T (2012) Pyrethroids: from Chrysanthemum to modern industrial insecticide, vol 314. Springer, BerlinGoogle Scholar
  105. Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D, Rischer H, Goossens A, Oksman-Caldentey K-M, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci 106(7):2447–2452Google Scholar
  106. Morrow WJ, Yang YW, Sheikh NA (2004) Immunobiology of the Tomatine adjuvant. Vaccine 22(19):2380–2384Google Scholar
  107. Nakajima N, Hiradate S, Fujii Y (2001) Plant growth inhibitory activity of L-Canavanine and its mode of action. J Chem Ecol 27(1):19–31Google Scholar
  108. Navarova H, Bernsdorff F, Doring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24(12):5123–5141Google Scholar
  109. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234CrossRefPubMedGoogle Scholar
  110. Nishihara E, Parvez MM, Araya H, Kawashima S, Fujii Y (2005) L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul 45(2):113–120Google Scholar
  111. Nissanka APK, Karunaratne V, Bandara BMR, Kumar V, Nakanishi T, Nishi M, Inada A, Tillekeratne LMV, Wijesundara DSA, Gunatilaka AAL (2001) Antimicrobial alkaloids from Zanthoxylum tetraspermum and caudatum. Phytochemistry 56(8):857–861Google Scholar
  112. Ober D (2003) Chapter nine chemical ecology of alkaloids exemplified with the pyrrolizidines. Recent Adv Phytochem 37:203–230Google Scholar
  113. Oluwole OS, Onabolu AO, Link H, Rosling H (2000) Persistence of tropical ataxic neuropathy in a Nigerian community. J Neurol Neurosurg Psychiatry 69(1):96–101CrossRefPubMedPubMedCentralGoogle Scholar
  114. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta (BBA) – Gene Regul Mech 1829(11):1236–1247Google Scholar
  115. Philippi J, Schliephake E, Jürgens H-U, Jansen G, Ordon F (2015) Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomol Exp Appl 156(1):37–51Google Scholar
  116. Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90(4):494–507CrossRefPubMedGoogle Scholar
  117. Radojčić Redovniković I, Glivetić T, Delonga K, Vorkapić-Furač J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309Google Scholar
  118. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg, pp 7–32Google Scholar
  119. Randhir R, Lin Y-T, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39(5):637–646Google Scholar
  120. Rehr SS, Janzen DH, Feeny PP (1973) L-dopa in legume seeds: a chemical barrier to insect attack. Science 181(4094):81–82Google Scholar
  121. Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New YorkGoogle Scholar
  122. Romeo J (2004) Secondary metabolism in model systems: recent advances in phytochemistry, vol 38. Elsevier, San DiegoCrossRefGoogle Scholar
  123. Rosenthal GA (2001) L-Canavanine: a higher plant insecticidal allelochemical. Amino Acids 21(3):319–330Google Scholar
  124. Rosenthal GA, Berenbaum MR (2012) Herbivores: their interactions with secondary plant metabolites, Ecological and evolutionary processes, vol 2. Academic, San DiegoGoogle Scholar
  125. Rosenthal GA, Dahlman DL (1986) L-Canavanine and protein synthesis in the tobacco hornworm Manduca sexta. Proc Natl Acad Sci U S A 83(1):14–18Google Scholar
  126. Samman S, Sandström B, Toft MB, Bukhave K, Jensen M, Sørensen SS, Hansen M (2001) Green tea or rosemary extract added to foods reduces nonheme-iron absorption. Am J Clin Nutr 73(3):607–612PubMedGoogle Scholar
  127. Samoylenko V, Ashfaq MK, Jacob MR, Tekwani BL, Khan SI, Manly SP, Joshi VC, Walker LA, Muhammad I (2009) Indolizidine, antiinfective and antiparasitic compounds from Prosopis glandulosa Torr. Var. glandulosa. Planta Med 75(04):48CrossRefGoogle Scholar
  128. Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63(1):115–127Google Scholar
  129. Sargison ND, Williamson DS, Duncan JR, McCance RW (1996) Prunus padus (bird cherry) poisoning in cattle. Vet Rec 138(8):188CrossRefPubMedGoogle Scholar
  130. Schappert PJ, Shore JS (1999) Cyanogenesis, herbivory and plant defense in Turnera ulmifolia on Jamaica. Ecoscience 6(4):511–520Google Scholar
  131. Schenk SU, Lambein F, Werner D (1991) Broad antifungal activity of β-isoxazolinonyl-alanine, a non-protein amino acid from roots of pea (Pisum sativumL.) seedlings. Biol Fertil Soils 11(3):203–209Google Scholar
  132. Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis toPhytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62(5):840–851Google Scholar
  133. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656CrossRefPubMedGoogle Scholar
  134. Seifen E, Adams RJ, Riemer RK (1979) Sanguinarine: a positive inotropic alkaloid which inhibits cardiac Na+, K+−ATPase. Eur J Pharmacol 60(4):373–377CrossRefPubMedGoogle Scholar
  135. Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155(1):502–514Google Scholar
  136. Shaw CA, Bains JS, Pasqualotto BA, Curry K (1999) Methionine sulfoximine shows excitotoxic actions in rat cortical slices. Can J Physiol Pharmacol 77(11):871–877CrossRefPubMedGoogle Scholar
  137. Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41(7):831–839Google Scholar
  138. Simons V, Morrissey JP, Latijnhouwers M, Csukai M, Cleaver A, Yarrow C, Osbourn A (2006) Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrob Agents Chemother 50(8):2732–2740Google Scholar
  139. Smith LC, Ravel JM, Lax SR, Shive W (1964) The effects of phenylalanine and tyrosine analogs on the synthesis and activity of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthetases. Arch Biochem Biophys 105:424–430CrossRefPubMedGoogle Scholar
  140. Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87(4):407–412Google Scholar
  141. Steele JC, Guzman T (1987) Observations about amyotrophic lateral sclerosis and the parkinsonism-dementia complex of Guam with regard to epidemiology and etiology. Can J Neurol Sci J Can Sci Neurol 14(3 Suppl):358–362CrossRefGoogle Scholar
  142. Tardito S, Chiu M, Franchi-Gazzola R, Dall’Asta V, Comi P, Bussolati O (2012) The non-proteinogenic amino acids l-methionine sulfoximine and dl-phosphinothricin activate mTOR. Amino Acids 42(6):2507–2512Google Scholar
  143. Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293(5536):1826–1828CrossRefPubMedGoogle Scholar
  144. Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164(S3):S93–S102Google Scholar
  145. Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65(1):225–257Google Scholar
  146. Tholl D, Lee S (2011) Terpene specialized metabolism inArabidopsis thaliana.Arabidopsis Book Am Soc Plant Biol 9:e0143Google Scholar
  147. Thorne HV, Clarke GF, Skuce R (1985) The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antivir Res 5(6):335–343CrossRefPubMedGoogle Scholar
  148. Tierens KFM-J, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125(4):1688–1699Google Scholar
  149. Topal S, Kocaçalişkan I (2006) Allelopathic effects of DOPA against four weed species. DPU Fen Bil Enst Dergisi 11:27–32Google Scholar
  150. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158(2):811–832PubMedPubMedCentralGoogle Scholar
  151. Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg) 7(6):581–591Google Scholar
  152. Tylleskär T, Rosling H, Banea M, Bikangi N, Cooke R, Poulter N (1992) Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. Lancet 339(8787):208–211CrossRefPubMedGoogle Scholar
  153. Ulrichová J, Walterová D, Preininger V, Slavik J, Lenfeld J, Cushman M, Šimánek V (1983) Inhibition of acetylcholinesterase activity by some isoquinoline alkaloids. Planta Med 48(06):111–115CrossRefPubMedGoogle Scholar
  154. Underhill E, Chisholm M, Steck W (1980) (E)-5,(Z)-7-Dodecadienal, a sex pheromone component of the western tent caterpillar, Malacosoma californicum (Lepidoptera: Lasiocampidae). The Canadian Entomologist 112(06):629–631Google Scholar
  155. Van Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148(2):304–311Google Scholar
  156. van Dam NM, Vuister LWM, Bergshoeff C, de Vos H, van Der Meijden E (1995) The “raison D’être” of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J Chem Ecol 21(5):507–523Google Scholar
  157. van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628CrossRefGoogle Scholar
  158. Vavrečková C, Gawlik I, Müller K (1996) Benzophenanthridine alkaloids of Chelidonium majus; I. Inhibition of 5-and 12-lipoxygenase by a non-redox mechanism. Planta Med 62(05):397–401CrossRefPubMedGoogle Scholar
  159. Velderrain-Rodriguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sanchez M, Astiazaran-Garcia H, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5(2):189–197Google Scholar
  160. Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38(1):11–36CrossRefPubMedGoogle Scholar
  161. Vogel-Adghough D, Stahl E, Návarová H, Zeier J (2013) Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signal Behav 8(11):e26366Google Scholar
  162. Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS (2005) The benzo [c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J Biol Chem 280(19):19078–19086CrossRefPubMedGoogle Scholar
  163. Wang BH, Lu ZX, Polya GM (1997) Inhibition of eukaryote protein kinases by isoquinoline and oxazine alkaloids. Planta Med 63(06):494–498CrossRefPubMedGoogle Scholar
  164. Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26(2):429–441Google Scholar
  165. Wang X, Wu X, Zhang Y, Tian YA (2013) Distributed spatial data integrated management prototype for geological applications. In: 2013 21st international conference on geoinformatics, 20–22 June 2013, pp 1–7Google Scholar
  166. Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336(6089):1667–1670Google Scholar
  167. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B Biol Sci 268(1482):2211–2220Google Scholar
  168. Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3(8):1205–1216Google Scholar
  169. Wink M (2011) Annual plant reviews, biochemistry of plant secondary metabolism. Wiley, OxfordGoogle Scholar
  170. Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175Google Scholar
  171. Wippich C, Wink M (1985) Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powdery mildew, Erysiphe graminis f. sp. hordei. Experientia 41(11):1477–1479Google Scholar
  172. World Health Organization (2013) Cyanogenic glycosides. Toxicological evaluation of certain food additives and naturally occurring toxicants, WHO Food Additive Series 30. WHO, GenevaGoogle Scholar
  173. Xuan T, Elzaawely A, Deba F, Fukuta M, Tawata S (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron Sustain Dev 26(2):89CrossRefGoogle Scholar
  174. Xuan TD, Minh TN, Khanh TD (2016) Isolation and biological activities of 3-hydroxy-4 (1H)-pyridone. J Plant Interact 11(1):94–100CrossRefGoogle Scholar
  175. Yasuda K, Kizu H, Yamashita T, Kameda Y, Kato A, Nash RJ, Fleet GW, Molyneux RJ, Asano N (2002) New sugar-mimic alkaloids from the pods of Angylocalyx pynaertii. J Nat Prod 65(2):198–202CrossRefPubMedGoogle Scholar
  176. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307Google Scholar
  177. Zadvornova Y, Alekseichuk G, Laman N, Khripach V, Grut S (2005) Effect of brassinosteroids on activation of the cell cycle during germination of Brassica oleraceaL. seeds. Doklady Natsional’noi Akademii Nauk Belarusi 49:70–73Google Scholar
  178. Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65(3):293–306CrossRefPubMedGoogle Scholar
  179. Zhao B, Grant G, Langevin D, MacDonald L (1998) Deterring and inhibiting effects of quinolizidine alkaloids on spruce budworm (Lepidoptera: Tortricidae) oviposition. Environ Entomol 27(4):984–992CrossRefGoogle Scholar
  180. Zhou C-X, Liu J-Y, Ye W-C, Liu C-H, Tan R-X (2003) Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59(30):5743–5747Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Kentucky Tobacco Research and Development CenterUniversity of KentuckyLexingtonUSA

Personalised recommendations