Skip to main content

Explorations of Plant’s Chemodiversity: Role of Nitrogen-Containing Secondary Metabolites in Plant Defense

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

In nature, plants are surrounded by a number of biotic and abiotic environmental stresses. Biotic ecosystems contain a wide variety of bacteria, viruses, fungi, nematodes, mites, insects, mammals, and other herbivorous animals, greatly responsible for heavy reduction in crop productivity. Henceforth, to cope up from these biotic stresses, the plant defense mechanism increasingly requires the availability of large numbers of phytochemicals. Chemodiversity in plants offers a valuable source; for example, nitrogen-containing secondary metabolites, previously regarded as waste products, are now recognized for their resistant activity against herbivores, pests, pathogens, and diseases. In this chapter, I have described the increasing role of nitrogen-containing secondary metabolites during plant defense. These metabolites impose their effects by acting as deterrence/antifeedant, toxicity, or precursors to physical defense systems. Many specialized herbivores and pathogens do not merely circumvent the deterrent or toxic effects of secondary metabolites but actually utilize these compounds as host recognition signals and/or nutrients. This is true for both cyanogenic glucosides and glucosinolates which are discussed in detail. Their biochemical and molecular mechanism of action is compared and contrasted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49(3):1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Alborn H, Stenhagen G, Leuschner K (1992) Biochemical selection of sorghum crop varieties resistant to sorghum shoot fly (Atherigona soccata) and stem borer (Chilo partellus): role of allelochemicals. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Springer, Dordrecht, pp 101–117

    Google Scholar 

  • Andersen SO (2010) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40(3):166–178

    Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released frombrassica roots inhibit growth of the take-all fungus. Plant Soil 162(1):107–112

    Google Scholar 

  • Anilakumar K, Khanum F, Bawa A (2006) Dietary role of glucosinolate derivatives: a review. J Food Sci Technol-Mysore 43(1):8–17

    CAS  Google Scholar 

  • Aronson JN, Wermus GR (1965) Effects of m-tyrosine on growth and sporulation of Bacillus species. J Bacteriol 90(1):38–46

    Google Scholar 

  • Arteca JM, Arteca RN (2001) Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants. Physiol Plant 112(1):104–112

    Google Scholar 

  • Ballhorn DJ (2011) Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.) J Chem Ecol 37(2):141–144

    Google Scholar 

  • Ballhorn DJ, Lieberei R, Ganzhorn JU (2005) Plant cyanogenesis of Phaseolus lunatusand its relevance for herbivore–plant interaction: the importance of quantitative data. J Chem Ecol 31(7):1445–1473

    Google Scholar 

  • Barbehenn RV, Peter Constabel C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565

    Google Scholar 

  • Bell EA (2003) Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51(10):2854–2865

    Google Scholar 

  • Bell EA, Lackey JA, Polhill RM (1978) Systematic significance of canavanine in the Papilionoideae (faboideae). Biochem Syst Ecol 6(3):201–212

    Google Scholar 

  • Benavente-Garcia O, Castillo J, Lorente J, Ortuño A, Del Rio JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68(4):457–462

    Google Scholar 

  • Berge MA, Rosenthal GA, Dahlman DL (1986) Tobacco budworm, Heliothis virescens[Noctuidae] resistance to l-canavanine, a protective allelochemical. Pestic Biochem Physiol 25(3):319–326

    Google Scholar 

  • Bertin C, Weston LA, Huang T, Jander G, Owens T, Meinwald J, Schroeder FC (2007) Grass roots chemistry: meta-tyrosine, an herbicidal non-protein amino acid. Proc Natl Acad Sci 104(43):16964–16969

    Google Scholar 

  • Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35(2):301–305

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95(8):4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brattsten LB, Samuelian JH, Long KY, Kincaid SA, Evans CK (1983) Cyanide as a feeding stimulant for the southern army worm, Spodoptera eridania. Ecol Entomol 8(2):125–132

    Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  • Bunawan NC, Rastegar A, White KP, Wang NE (2014) Djenkolism: case report and literature review. Int Med Case Rep J 7:79–84

    Google Scholar 

  • Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd El Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA (1993) Current status and future strategy in breeding grasspea (Lathyrus sativus). Euphytica 73(1):167–175

    Google Scholar 

  • Chakraborty A, Chowdhury BK, Bhattacharyya P (1995a) Clausenol and clausenine—two carbazole alkaloids from Clausena anisata. Phytochemistry 40(1):295–298

    Google Scholar 

  • Chakraborty A, Saha C, Podder G, Chowdhury BK, Bhattacharyya P (1995b) Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry 38(3):787–789

    Google Scholar 

  • Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem 272(48):30129–30134

    Article  CAS  PubMed  Google Scholar 

  • Chiu FL, Lin JK (2008) Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett 582(16):2407–2412

    Google Scholar 

  • Cordell GA (2000) Biodiversity and drug discovery—a symbiotic relationship. Phytochemistry 55(6):463–480

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8(3):308–316

    Google Scholar 

  • De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336(6089):1658–1661

    Google Scholar 

  • del Carmen M-BM, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625

    Google Scholar 

  • Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27

    Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336

    Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847

    Article  CAS  PubMed  Google Scholar 

  • Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38(2):347–350

    Google Scholar 

  • Eisler R (1991) Cyanide hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Department of the Interior, Fish and Wildlife Service, Laurel

    Google Scholar 

  • Ellsbury M, Pederson G, Fairbrother T (1992) Resistance to foliar-feeding Hyperine weevils (coleoptera: Curculionidae) in cyanogenic white clover. J Econ Entomol 85(6):2467–2472

    Google Scholar 

  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.) J Agric Food Chem 54(2):328–334

    Google Scholar 

  • Erdemoglu N, Ozkan S, Tosun F (2007) Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev 6(1):197–201

    Google Scholar 

  • Erdemoglu N, Ozkan S, Duran A, Tosun F (2009) GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii. Pharm Biol 47(1):81–85

    Google Scholar 

  • Ernesto M, Cardoso AP, Nicala D, Mirione E, Massaza F, Cliff J, Haque MR, Bradbury JH (2002) Persistent konzo and cyanogen toxicity from cassava in northern Mozambique. Acta Trop 82(3):357–362

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54(4):763–784

    Google Scholar 

  • Farnsworth NR (1988) Screening plants for new medicines. Biodiversity 1:83–97

    Google Scholar 

  • Fleming FF (1999) Nitrile-containing natural products. Nat Prod Rep 16(5):597–606

    Article  CAS  Google Scholar 

  • Fletcher M, Al Jassim R, Cawdell-Smith A (2015) The occurrence and toxicity of Indospicine to grazing animals. Agriculture 5(3):427

    Article  CAS  Google Scholar 

  • Fowden L (1963) Amino-acid analogues and the growth of seedlings. J Exp Bot 14(3):387–398

    Article  CAS  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50(21):5751–5780

    Article  CAS  PubMed  Google Scholar 

  • Gallot A, Rispe C, Leterme N, Gauthier J-P, Jaubert-Possamai S, Tagu D (2010) Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Mol Biol 40(3):235–240

    Google Scholar 

  • Ganjewala D, Kumar S, Devi S, Ambika K (2010) Advances in cyanogenic glycosides biosynthesis and analyses in plants: a review. Acta Biologica Szegediensis 54(1):1–14

    Google Scholar 

  • Gershenzon J, Croteau R (1992) Terpenoids. In: Herbivores: their interactions with secondary plant metabolites, The chemical participants, vol 1, 2nd edn. Academic, San Diego, pp 165–219

    Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126(2):347–363

    Google Scholar 

  • Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93(5–6):1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Woodrow IE (2000) Polymorphism in cyanogenic glycoside content and cyanogenic β-glucosidase activity in natural populations of Eucalyptus cladocalyx. Funct Plant Biol 27(7):693–699

    Article  CAS  Google Scholar 

  • González-García M-P, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859

    Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M, Diarra M, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10(8):3400

    Article  PubMed  PubMed Central  Google Scholar 

  • Graser G, Schneider B, Oldham NJ, Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa(Brassicaceae). Arch Biochem Biophys 378(2):411–419

    Google Scholar 

  • Gurer-Orhan H, Ercal N, Mare S, Pennathur S, Orhan H, Heinecke JW (2006) Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem J 395(2):277–284

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Haque MR, Bradbury JH (2002) Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem 77(1):107–114

    Article  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207(4):483–495

    Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Biosynthesis: aromatic polyketides, isoprenoids, alkaloids. Springer, Berlin/Heidelberg, pp 207–243

    Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129

    Google Scholar 

  • Hasegawa T, Yamada K, Kosemura S, Yamamura S, Hasegawa K (2000) Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls. Phytochemistry 54(3):275–279

    Google Scholar 

  • Hirayama C, Konno K, Wasano N, Nakamura M (2007) Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx morito mulberry defense. Insect Biochem Mol Biol 37(12):1348–1358

    Google Scholar 

  • Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22(4):273–292

    Article  CAS  Google Scholar 

  • Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72(13):1531–1537

    Google Scholar 

  • Huang T, Rehak L, Jander G (2012) Meta-tyrosine inFestuca rubra ssp. commutata (Chewings fescue) is synthesized by hydroxylation of phenylalanine. Phytochemistry 75:60–66

    Google Scholar 

  • Huh J, Liepins A, Zielonka J, Andrekopoulos C, Kalyanaraman B, Sorokin A (2006) Cyclooxygenase 2 rescues LNCaP prostate cancer cells from sanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity. Cancer Res 66(7):3726–3736

    Article  CAS  PubMed  Google Scholar 

  • Ince PG, Codd GA (2005) Return of the cycad hypothesis – does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol 31(4):345–353

    Google Scholar 

  • Ishaaya I, Hirashima A, Yablonski S, Tawata S, Eto M (1991) Mimosine, a nonprotein amino acid, inhibits growth and enzyme systems in Tribolium castaneum. Pestic Biochem Physiol 39(1):35–42

    Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19(8):603–608

    Article  CAS  Google Scholar 

  • Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) Alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581(17):3217–3222

    Google Scholar 

  • Iwasa K, Moriyasu M, Tachibana Y, Kim H-S, Wataya Y, Wiegrebe W, Bastow KF, Cosentino LM, Kozuka M, Lee K-H (2001) Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorg Med Chem 9(11):2871–2884

    Google Scholar 

  • Janzen DH, Juster HB, Arthur Bell E (1977) Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus. Phytochemistry 16(O):223–227

    Google Scholar 

  • Jeng J-H, Wu H-L, Lin B-R, Lan W-H, Chang H-H, Ho Y-S, Lee P-H, Wang Y-J, Wang J-S, Chen Y-J (2007) Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 191(2):250–258

    Article  CAS  PubMed  Google Scholar 

  • Kadow D, Voß K, Selmar D, Lieberei R (2012) The cyanogenic syndrome in rubber tree Hevea brasiliensis: tissue-damage-dependent activation of linamarase and hydroxynitrile lyase accelerates hydrogen cyanide release. Ann Bot 109:1253. mcs057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:9

    Google Scholar 

  • Kaur S, Gupta SK, Sukhija PS, Munshi SK (1990) Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur application. Plant Sci 66(2):181–184

    Google Scholar 

  • Kiddle GA, Doughty KJ, Wallsgrove RM (1994) Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. J Exp Bot 45(9):1343–1346

    Google Scholar 

  • Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49(6):1008–1019

    Google Scholar 

  • Kitajima T, Chiba Y (2013) Selenomethionine metabolism and its toxicity in yeast. Biomol Concepts 4(6):611–616

    Article  CAS  PubMed  Google Scholar 

  • Klipcan L, Moor N, Kessler N, Safro MG (2009) Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine. Proc Natl Acad Sci U S A 106(27):11045–11048

    Google Scholar 

  • Krothapalli K, Buescher EM, Li X, Brown E, Chapple C, Dilkes BP, Tuinstra MR (2013) Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Genetics 195(2):309–318

    Google Scholar 

  • Kuete V, Wansi JD, Mbaveng AT, Kana Sop MM, Tadjong AT, Beng VP, Etoa FX, Wandji J, Meyer JJM, Lall N (2008) Antimicrobial activity of the methanolic extract and compounds fromTeclea afzelii (Rutaceae). S Afr J Bot 74(4):572–576

    Google Scholar 

  • Kuwahata H, Katsuyama S, Komatsu T, Nakamura H, Corasaniti MT, Bagetta G, Sakurada S, Sakurada T, Takahama K (2012) Local peripheral effects of β-Caryophyllene through CB 2 receptors in neuropathic pain in mice. Pharmacol Pharm 3(04):397

    Article  Google Scholar 

  • Lambein F, Kuo Y-H, Ikegami F, Murakoshi I (1990) Toxic and non-toxic nonprotein amino acids in the Vicieae. In: Amino acids. Springer, pp 21–28

    Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry Adv Res 661:23–67

    Google Scholar 

  • Lee S-J, Umano K, Shibamoto T, Lee K-G (2005) Identification of volatile components in basil (Ocimum basilicumL.) and thyme leaves (Thymus vulgarisL.) and their antioxidant properties. Food Chem 91(1):131–137

    Google Scholar 

  • Legault J, Côté P-A, Ouellet S, Simard S, Pichette A (2013) Iso-caryophyllene cytotoxicity induced by lipid peroxidation and membrane permeabilization in L-929 cells. J Appl Pharma Sci 3:25

    Google Scholar 

  • Li Y, Kiddle G, Bennett RN, Wallsgrove RM (1999) Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica nap us L.) after inoculation with Sclerotinia sclerotiorum (stem rot). Ann Appl Biol 134(1):45–58

    Google Scholar 

  • Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania onBrassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26(10):2401–2419

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Google Scholar 

  • Ma W, Fukushi Y, Tahara S (1999) Fungitoxic alkaloids from Hokkaido Corydalis species. Fitoterapia 70(3):258–265

    Google Scholar 

  • Malagon J, Garrido A (1990) Relation between cyanogenic glycosides content and the resistance to Capnodis tenebrionis(L.) in stone fruits. Boletín de Sanidad Vegetal, Plagas 16(2):499–503

    Google Scholar 

  • Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Maneerat W, Phakhodee W, Ritthiwigrom T, Cheenpracha S, Promgool T, Yossathera K, Deachathai S, Laphookhieo S (2012) Antibacterial carbazole alkaloids from Clausena harmandiana twigs. Fitoterapia 83(6):1110–1114

    Google Scholar 

  • Mari M, Leoni O, Iori R, Cembali T (2002) Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillium expansum on pears. Plant Pathol 51(2):231–236

    Google Scholar 

  • Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8(1):13–25

    Google Scholar 

  • McSweeney C, Collins E, Blackall L, Seawright A (2008) A review of anti-nutritive factors limiting potential use of Acacia angustissima as a ruminant feed. Anim Feed Sci Technol 147(1):158–171

    Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162

    Google Scholar 

  • Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67(22):2450–2462

    Google Scholar 

  • Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751

    CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Mori T (2012) Pyrethroids: from Chrysanthemum to modern industrial insecticide, vol 314. Springer, Berlin

    Google Scholar 

  • Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D, Rischer H, Goossens A, Oksman-Caldentey K-M, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci 106(7):2447–2452

    Google Scholar 

  • Morrow WJ, Yang YW, Sheikh NA (2004) Immunobiology of the Tomatine adjuvant. Vaccine 22(19):2380–2384

    Google Scholar 

  • Nakajima N, Hiradate S, Fujii Y (2001) Plant growth inhibitory activity of L-Canavanine and its mode of action. J Chem Ecol 27(1):19–31

    Google Scholar 

  • Navarova H, Bernsdorff F, Doring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24(12):5123–5141

    Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

    Article  CAS  PubMed  Google Scholar 

  • Nishihara E, Parvez MM, Araya H, Kawashima S, Fujii Y (2005) L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul 45(2):113–120

    Google Scholar 

  • Nissanka APK, Karunaratne V, Bandara BMR, Kumar V, Nakanishi T, Nishi M, Inada A, Tillekeratne LMV, Wijesundara DSA, Gunatilaka AAL (2001) Antimicrobial alkaloids from Zanthoxylum tetraspermum and caudatum. Phytochemistry 56(8):857–861

    Google Scholar 

  • Ober D (2003) Chapter nine chemical ecology of alkaloids exemplified with the pyrrolizidines. Recent Adv Phytochem 37:203–230

    Google Scholar 

  • Oluwole OS, Onabolu AO, Link H, Rosling H (2000) Persistence of tropical ataxic neuropathy in a Nigerian community. J Neurol Neurosurg Psychiatry 69(1):96–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta (BBA) – Gene Regul Mech 1829(11):1236–1247

    Google Scholar 

  • Philippi J, Schliephake E, Jürgens H-U, Jansen G, Ordon F (2015) Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomol Exp Appl 156(1):37–51

    Google Scholar 

  • Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90(4):494–507

    Article  PubMed  Google Scholar 

  • Radojčić Redovniković I, Glivetić T, Delonga K, Vorkapić-Furač J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309

    Google Scholar 

  • Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg, pp 7–32

    Google Scholar 

  • Randhir R, Lin Y-T, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39(5):637–646

    Google Scholar 

  • Rehr SS, Janzen DH, Feeny PP (1973) L-dopa in legume seeds: a chemical barrier to insect attack. Science 181(4094):81–82

    Google Scholar 

  • Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New York

    Google Scholar 

  • Romeo J (2004) Secondary metabolism in model systems: recent advances in phytochemistry, vol 38. Elsevier, San Diego

    Book  Google Scholar 

  • Rosenthal GA (2001) L-Canavanine: a higher plant insecticidal allelochemical. Amino Acids 21(3):319–330

    Google Scholar 

  • Rosenthal GA, Berenbaum MR (2012) Herbivores: their interactions with secondary plant metabolites, Ecological and evolutionary processes, vol 2. Academic, San Diego

    Google Scholar 

  • Rosenthal GA, Dahlman DL (1986) L-Canavanine and protein synthesis in the tobacco hornworm Manduca sexta. Proc Natl Acad Sci U S A 83(1):14–18

    Google Scholar 

  • Samman S, Sandström B, Toft MB, Bukhave K, Jensen M, Sørensen SS, Hansen M (2001) Green tea or rosemary extract added to foods reduces nonheme-iron absorption. Am J Clin Nutr 73(3):607–612

    CAS  PubMed  Google Scholar 

  • Samoylenko V, Ashfaq MK, Jacob MR, Tekwani BL, Khan SI, Manly SP, Joshi VC, Walker LA, Muhammad I (2009) Indolizidine, antiinfective and antiparasitic compounds from Prosopis glandulosa Torr. Var. glandulosa. Planta Med 75(04):48

    Article  Google Scholar 

  • Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63(1):115–127

    Google Scholar 

  • Sargison ND, Williamson DS, Duncan JR, McCance RW (1996) Prunus padus (bird cherry) poisoning in cattle. Vet Rec 138(8):188

    Article  CAS  PubMed  Google Scholar 

  • Schappert PJ, Shore JS (1999) Cyanogenesis, herbivory and plant defense in Turnera ulmifolia on Jamaica. Ecoscience 6(4):511–520

    Google Scholar 

  • Schenk SU, Lambein F, Werner D (1991) Broad antifungal activity of β-isoxazolinonyl-alanine, a non-protein amino acid from roots of pea (Pisum sativumL.) seedlings. Biol Fertil Soils 11(3):203–209

    Google Scholar 

  • Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis toPhytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62(5):840–851

    Google Scholar 

  • Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656

    Article  CAS  PubMed  Google Scholar 

  • Seifen E, Adams RJ, Riemer RK (1979) Sanguinarine: a positive inotropic alkaloid which inhibits cardiac Na+, K+−ATPase. Eur J Pharmacol 60(4):373–377

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155(1):502–514

    Google Scholar 

  • Shaw CA, Bains JS, Pasqualotto BA, Curry K (1999) Methionine sulfoximine shows excitotoxic actions in rat cortical slices. Can J Physiol Pharmacol 77(11):871–877

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41(7):831–839

    Google Scholar 

  • Simons V, Morrissey JP, Latijnhouwers M, Csukai M, Cleaver A, Yarrow C, Osbourn A (2006) Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrob Agents Chemother 50(8):2732–2740

    Google Scholar 

  • Smith LC, Ravel JM, Lax SR, Shive W (1964) The effects of phenylalanine and tyrosine analogs on the synthesis and activity of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthetases. Arch Biochem Biophys 105:424–430

    Article  CAS  PubMed  Google Scholar 

  • Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87(4):407–412

    Google Scholar 

  • Steele JC, Guzman T (1987) Observations about amyotrophic lateral sclerosis and the parkinsonism-dementia complex of Guam with regard to epidemiology and etiology. Can J Neurol Sci J Can Sci Neurol 14(3 Suppl):358–362

    Article  CAS  Google Scholar 

  • Tardito S, Chiu M, Franchi-Gazzola R, Dall’Asta V, Comi P, Bussolati O (2012) The non-proteinogenic amino acids l-methionine sulfoximine and dl-phosphinothricin activate mTOR. Amino Acids 42(6):2507–2512

    Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293(5536):1826–1828

    Article  CAS  PubMed  Google Scholar 

  • Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164(S3):S93–S102

    Google Scholar 

  • Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65(1):225–257

    Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism inArabidopsis thaliana.Arabidopsis Book Am Soc Plant Biol 9:e0143

    Google Scholar 

  • Thorne HV, Clarke GF, Skuce R (1985) The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antivir Res 5(6):335–343

    Article  CAS  PubMed  Google Scholar 

  • Tierens KFM-J, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125(4):1688–1699

    Google Scholar 

  • Topal S, Kocaçalişkan I (2006) Allelopathic effects of DOPA against four weed species. DPU Fen Bil Enst Dergisi 11:27–32

    Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158(2):811–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg) 7(6):581–591

    Google Scholar 

  • Tylleskär T, Rosling H, Banea M, Bikangi N, Cooke R, Poulter N (1992) Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. Lancet 339(8787):208–211

    Article  PubMed  Google Scholar 

  • Ulrichová J, Walterová D, Preininger V, Slavik J, Lenfeld J, Cushman M, Šimánek V (1983) Inhibition of acetylcholinesterase activity by some isoquinoline alkaloids. Planta Med 48(06):111–115

    Article  PubMed  Google Scholar 

  • Underhill E, Chisholm M, Steck W (1980) (E)-5,(Z)-7-Dodecadienal, a sex pheromone component of the western tent caterpillar, Malacosoma californicum (Lepidoptera: Lasiocampidae). The Canadian Entomologist 112(06):629–631

    Google Scholar 

  • Van Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148(2):304–311

    Google Scholar 

  • van Dam NM, Vuister LWM, Bergshoeff C, de Vos H, van Der Meijden E (1995) The “raison D’être” of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J Chem Ecol 21(5):507–523

    Google Scholar 

  • van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    Article  Google Scholar 

  • Vavrečková C, Gawlik I, Müller K (1996) Benzophenanthridine alkaloids of Chelidonium majus; I. Inhibition of 5-and 12-lipoxygenase by a non-redox mechanism. Planta Med 62(05):397–401

    Article  PubMed  Google Scholar 

  • Velderrain-Rodriguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sanchez M, Astiazaran-Garcia H, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5(2):189–197

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38(1):11–36

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Adghough D, Stahl E, Návarová H, Zeier J (2013) Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signal Behav 8(11):e26366

    Google Scholar 

  • Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS (2005) The benzo [c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J Biol Chem 280(19):19078–19086

    Article  CAS  PubMed  Google Scholar 

  • Wang BH, Lu ZX, Polya GM (1997) Inhibition of eukaryote protein kinases by isoquinoline and oxazine alkaloids. Planta Med 63(06):494–498

    Article  CAS  PubMed  Google Scholar 

  • Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26(2):429–441

    Google Scholar 

  • Wang X, Wu X, Zhang Y, Tian YA (2013) Distributed spatial data integrated management prototype for geological applications. In: 2013 21st international conference on geoinformatics, 20–22 June 2013, pp 1–7

    Google Scholar 

  • Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336(6089):1667–1670

    Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B Biol Sci 268(1482):2211–2220

    Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3(8):1205–1216

    CAS  Google Scholar 

  • Wink M (2011) Annual plant reviews, biochemistry of plant secondary metabolism. Wiley, Oxford

    Google Scholar 

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175

    Google Scholar 

  • Wippich C, Wink M (1985) Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powdery mildew, Erysiphe graminis f. sp. hordei. Experientia 41(11):1477–1479

    Google Scholar 

  • World Health Organization (2013) Cyanogenic glycosides. Toxicological evaluation of certain food additives and naturally occurring toxicants, WHO Food Additive Series 30. WHO, Geneva

    Google Scholar 

  • Xuan T, Elzaawely A, Deba F, Fukuta M, Tawata S (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron Sustain Dev 26(2):89

    Article  CAS  Google Scholar 

  • Xuan TD, Minh TN, Khanh TD (2016) Isolation and biological activities of 3-hydroxy-4 (1H)-pyridone. J Plant Interact 11(1):94–100

    Article  Google Scholar 

  • Yasuda K, Kizu H, Yamashita T, Kameda Y, Kato A, Nash RJ, Fleet GW, Molyneux RJ, Asano N (2002) New sugar-mimic alkaloids from the pods of Angylocalyx pynaertii. J Nat Prod 65(2):198–202

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307

    Google Scholar 

  • Zadvornova Y, Alekseichuk G, Laman N, Khripach V, Grut S (2005) Effect of brassinosteroids on activation of the cell cycle during germination of Brassica oleraceaL. seeds. Doklady Natsional’noi Akademii Nauk Belarusi 49:70–73

    Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65(3):293–306

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Grant G, Langevin D, MacDonald L (1998) Deterring and inhibiting effects of quinolizidine alkaloids on spruce budworm (Lepidoptera: Tortricidae) oviposition. Environ Entomol 27(4):984–992

    Article  CAS  Google Scholar 

  • Zhou C-X, Liu J-Y, Ye W-C, Liu C-H, Tan R-X (2003) Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59(30):5743–5747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K. (2018). Explorations of Plant’s Chemodiversity: Role of Nitrogen-Containing Secondary Metabolites in Plant Defense. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_14

Download citation

Publish with us

Policies and ethics