Skip to main content

Proteomic Studies Revealing Enigma of Plant–Pathogen Interaction

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

Pathogen attack is an intricate stimulus that induces stepwise defence response, namely, pathogen recognition, signal transduction and accomplishment of resistance/defense. These steps employ an array of proteins, interacting among themselves to sense the pathogen and produce antimicrobials antagonistic to pathogen growth. In order to gain insights in molecular mechanism of plant–pathogen interaction at the biochemical and cellular level, deciphering the proteins that are involved in this cellular medley is a prerequisite. Proteomics, one of the important subjects of “OMICS” generation, has played a principal role in the identification of these proteins. Proteomics aims at identification and quantification of the proteins mediating a specific cellular process. While the current proteomic studies give valid information about these processes, they also emphasize upon the significance of post-translational modifications. The information on sequence and post-translational modifications of proteins is then used to further decipher the biological processes using bioinformatics, genomics, cell biology, biochemistry and other areas of life sciences. We present a brief overview of the proteomic studies related to host–virus, host–bacteria and host–fungus interaction. We also provide the current stage of information on the techniques applied in proteomics and also the future challenges in this area of biological science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah C, Dumas-Gaudot E, Renaut J et al (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genom 2012:Article ID 494572., 17 pages. https://doi.org/10.1155/2012/ 494572

    Google Scholar 

  • Agarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genom Proteomics 5(2):112–120

    Article  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Lebrun MH et al (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  CAS  PubMed  Google Scholar 

  • Anderson DC, Campbell EL, Meeks JC (2006) A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res 5:3096–3104

    Article  CAS  PubMed  Google Scholar 

  • Andrade AE, Silva LP, Pereira JL et al (2008) In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea. FEMS Microbiol Lett 281:167–174

    Article  CAS  PubMed  Google Scholar 

  • Anguraj-Vadivel AK (2015) Gel-based proteomics in plants: time to move on from the tradition. Front Plant Sci 6:369

    Article  PubMed  PubMed Central  Google Scholar 

  • Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8

    Article  CAS  PubMed  Google Scholar 

  • Babich R, Katam R (2016) Leaf proteome profiling and their interactions to determine disease resistance in Grape. Book of Abstract ‘Plant and Animal genome conference XXIV’ January 08–13, 2016 San Diego, CA

    Google Scholar 

  • Bertone P, Snyder M (2005) Advances in functional protein microarray technology. FEBS J 272:5400–5411

    Article  CAS  PubMed  Google Scholar 

  • Bohmer M, Colby T, Bohmer C et al (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 7:675–685

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bosch G, Skovran E, Xia Q et al (2008) Comprehensive proteomics of methylobacterium extorquens AM1 metabolism under single carbon and non methylotrophic conditions. Proteomics 8:3494–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizard JP, Carapito C, Delalande F et al (2006) Proteome analysis of plant–virus interactome: comprehensive data for virus multiplication inside their hosts. Mol Cell Proteomics 5:2279–2297

    Article  CAS  PubMed  Google Scholar 

  • Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133

    Article  PubMed  CAS  Google Scholar 

  • Campo S, Carrascal M, Coca M et al (2004) The defence response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Cantin GT, Venable JD, Cociorva D et al (2006) Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway. J Proteome Res 5(1):127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casado-Vela J, Selles S, Martinez RB (2006) Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics 6(Suppl. 1):S196–S206

    Article  PubMed  Google Scholar 

  • Chen F, Yuan Y, Li Q et al (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Chivasa S, Hamilton JM, Pringle RS et al (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J Expt Bot 57(7):1553–1562

    Article  CAS  Google Scholar 

  • Chung WJ, Shu HY, Lu C et al (2007) Qualitative and comparative proteomic analysis of Xanthomonas campestris pv. Campestris17. Proteomics 7:2047–2058

    Article  CAS  PubMed  Google Scholar 

  • Coaker GL, Willard B, Kinter M et al (2004) Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol Plant-Microbe Interact 17:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Cooper B, Clarke JD, Budworth P et al (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A 100:4945–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett M, Virtue S, Bell K et al (2005) Identification of a new quorum-sensing controlled virulence factor in Erwinia carotovora subsp. Atroseptica secreted via the type II targeting pathway. Mol Plant-Microbe Interact 18:334–342

    Article  CAS  PubMed  Google Scholar 

  • De-Blasio SL, Johnson R, Sweeney MM et al (2015) The potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection. Proteomics 15(12):2098–2112

    Article  CAS  Google Scholar 

  • Delalande F, Carapito C, Brizard JP et al (2005) Multigenic families and proteomics: extended protein characterization as a tool for paralog gene identification. Proteomics 5:450–460

    Article  CAS  PubMed  Google Scholar 

  • Delaunois B, Jeandet P, Clément C et al (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5(249):1–18

    Google Scholar 

  • Demirci YE, Inan C, Gunel A et al (2016) Proteome profiling of the compatible interaction between wheat and stripe rust. Eur J Plant Pathol 145(4):941–962

    Article  CAS  Google Scholar 

  • Devos S, Laukens K, Deckers P et al (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant-Microbe Interact 19:1431–1443

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V et al (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57:3813–3824

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant– pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  CAS  PubMed  Google Scholar 

  • Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Duley H, Grover A (2001) Current initiatives in proteomics research: the plant perspective. Curr Sci 80(2):262–269

    Google Scholar 

  • Ekramoddoullah AKM, Hunt RS (1993) Changes in protein profile of susceptible and resistant sugar-pine foliage infected with the Whitepine blister rust fungus Cronartium ribicola. Can J Plant Pathol 15(4):259–264

    Article  CAS  Google Scholar 

  • Ellis JG, Dodds PN, Lawrence GJ (2007) The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr Opin Microbiol 10:326–331

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Liu BF, Li J et al (2015) Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrom Rev 34(5):535–557

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Fey SJ, Larsen PM (2001) 2D or not 2D two-dimensional gel electrophoresis. Curr Opin Chem Biol 5:26–33

    Article  CAS  PubMed  Google Scholar 

  • Flajsman M, Mandelc S, Radisek S et al (2016) Identification of novel virulence-associated proteins secreted to xylem by Verticillium nonalfalfae during colonization of hop plants. Mol Plant Microbe Interact 29(5):362–373

    Article  CAS  PubMed  Google Scholar 

  • Gao W (2014) Analysis of protein changes using two-dimensional difference gel electrophoresis. Mol Toxicol Protocol 1105:17–30

    Article  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez R, Jorrin-Novo JV (2010) Proteomics of fungal plant pathogens: the case of Botrytis cinerea. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX, Badajoz, pp 205–217

    Google Scholar 

  • Gorg A, Weiss W, Dunn M (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  CAS  Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenville-Briggs LJ, Avrova AO, Bruce CR et al (2005) Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genet Biol 42:244–256

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro N, Redmond JW, Rolfe BG et al (1997) New Rhizobium leguminorum flavonoid induced proteins revealed by proteome analysis of differentially displayed proteins. Mol Plant-Microbe Interact 10:506–516

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Zhu H, Zhu X et al (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (2000) Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, pp 1102–1156

    Google Scholar 

  • Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin C Biol 12(5):483–490

    Article  CAS  Google Scholar 

  • Hernandez LG, Lu B, Da Cruz GC et al (2012) Worker honeybee brain proteome. J Proteome Res 11:1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R et al (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22:115–122

    Article  CAS  PubMed  Google Scholar 

  • Hoving S, Voshol H, Oostrum J (2000) Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis 21:2617–2621

    Article  CAS  PubMed  Google Scholar 

  • Issaq HJ, Chan KC, Janini GM et al (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B 817(1):35–47

    Article  CAS  Google Scholar 

  • Jacobs JM, Babujee L, Meng F et al (2012) The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 3:112–114

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones AME, Thomas V, Truman B et al (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816

    Article  CAS  PubMed  Google Scholar 

  • Jones AME, Thomas V, Bennett MH et al (2006) Modifications to the Arabidopsis defence proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy S, Loganathan K, Muthuraj R et al (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran R, Ramachandran VK, Seaman JC et al (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N (2004) The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Chakraborty D, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to Mungbean yellow mosaic India virus in Vigna mungo. J Proteome 74:337–349

    Article  CAS  Google Scholar 

  • Kwon YS, Lee DY, Rakwal R et al (2016) Proteomic analyses of the interaction between the plant-growth promoting Rhizobacterium paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 1:122–135

    Article  CAS  Google Scholar 

  • Larrainzar E, Wienkoop S, Weckwerth W et al (2007) Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol 144:1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen MKG, Jorgensen MM, Bennike TB et al (2016) Time-course investigation of Phytophthora infestans infection of potato leaf from three cultivars by quantitative proteomics. Elsevier Data Brief 6:238–248

    Article  Google Scholar 

  • Lee BJ, Kwon SJ, Kim SK et al (2006) Functional study of hot pepper 26S proteasome subunit RPN7 induced by tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun 351:405–411

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Srivastava S, Rahman MH et al (2008) Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem 56(60):1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G et al (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545

    Article  CAS  PubMed  Google Scholar 

  • Lodha TD, Basak J (2012) Plant-pathogen interaction: what microarray tells about it? Mol Biotechnol 50(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Lodha TD, Hembram P, Tep N et al (2013) Proteomics: a successful approach to understand the molecular mechanism of plant-pathogen interaction. Am J Plant Sci 4:1212–1226

    Article  CAS  Google Scholar 

  • Lund TC, Anderson LB, McCullar V (2007) iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J Proteome Res 6:644–653

    Article  CAS  PubMed  Google Scholar 

  • Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26:1885–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Jan A, Kakishima M et al (2006) Proteomic analysis of bacterial-blight defence responsive proteins in rice leaf blades. Proteomics 6:6053–6065

    Article  CAS  PubMed  Google Scholar 

  • Mandelc S, Timperman I, Radisek S et al (2013) Comparative proteomic profiling in compatible and incompatible interactions between hop roots and Verticillium alboatrum. Plant Physiol Biochem 68:23–31

    Article  CAS  PubMed  Google Scholar 

  • Maor R, Jones A, Nühse TS et al (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6(4):601–610

    Article  CAS  PubMed  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bio Anal Chem 382(3):669–678

    Article  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao M et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattinen L, Nissinen R, Riipi T et al (2007) Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 7:3527–3537

    Article  CAS  PubMed  Google Scholar 

  • McGregor E, Dunn MJ (2006) Proteomics of the heart unraveling disease. Circ Res 98(3):309–321

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Rosato YB (2001) Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant. Proteomics 1:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Brasileiro ACM, Souza DSL et al (2008) Plant–pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746

    Article  CAS  PubMed  Google Scholar 

  • Meijer HJ, Van-de-Vondervoort PJ, Yin QY et al (2006) Identification of cell wall-associated proteins from Phytophthora ramorum. Mol Plant-Microbe Interact 19:1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Moore CD, Ajala OZ, Zhu H (2016) Applications in high-content functional protein microarrays. Curr Opin Chem Biol 30:21–27

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Carp MJ, Zuchman R et al (2010) Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteome 73:709–720

    Article  CAS  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ et al (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Expt Bot 59:501–520

    Article  CAS  Google Scholar 

  • Nat NVK, Srivastava S, Yajima W et al (2007) Application of proteomics to investigate plant-pathogen interactions. Curr Proteomics 4(1):28–43

    Article  Google Scholar 

  • Newton A, Fitt BDL, Atkins SD et al (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Lemr K, Schug KA et al (2015) CycloBranch: de novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J Am Soc Mass Spectrom 10:1780–1786

    Article  CAS  Google Scholar 

  • Pakkianathan BC, Murad G (2014) Recent advances on interactions between the whitefly Bemisia tabaci and begomoviruses, with emphasis on Tomato yellow leaf curl virus. In: Gaur RK, Hohn T, Sharma P (eds) Plant virus-host interaction. Elsevier, Amsterdam, pp 79–103

    Google Scholar 

  • Perez-Bueno ML, Rahoutei J, Sajnani C et al (2004) Proteomic analysis of the oxygen evolving complex of photosystem II under biotic stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  CAS  PubMed  Google Scholar 

  • Phalip V, Delalande F, Carapito C et al (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366–379

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 4:456–464

    Article  CAS  Google Scholar 

  • Rahoutei J, Baron M, Garcia-Luque I et al (1999) Effect of tobamovirus infection on the thermoluminescence characteristics of chloroplast from infected plants. Z Naturforsch Teil C 54:634–639

    CAS  Google Scholar 

  • Rahoutei J, Garcia-Luque I, Baron M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292

    Article  CAS  Google Scholar 

  • Rampitsch C, Bykova NV, Mccallum B et al (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host pathogen interaction. Proteomics 6:1897–1907

    Article  CAS  PubMed  Google Scholar 

  • Righetti PG, Castagna A, Antonucci F et al (2004) Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J Chromatogr A 1051:3–17

    Article  CAS  PubMed  Google Scholar 

  • Rogowska-Wrzesinska A, Bihan MCL, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13

    Article  CAS  Google Scholar 

  • Romanov V, Davidoff SN, Miles AR et al (2014) A critical comparison of protein microarray fabrication technologies. Analyst 139(6):1303–1326

    Article  CAS  PubMed  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ et al (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 5:715–733

    Article  CAS  Google Scholar 

  • Rosen R, Sacher A, Shechter N et al (2004) Two dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics 4:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Choo JH, Wong CL (2009) Microarray analyses to study plant defense and rhizosphere microbe interaction. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 45:1–14

    Google Scholar 

  • Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63:451–482

    Article  CAS  PubMed  Google Scholar 

  • Smith R (2009) Two-dimensional electrophoresis: an overview. In: Tyther R, Sheehan D (eds) Two-dimensional electrophoresis protocols. Humana Press, Totowa, pp 2–17

    Chapter  Google Scholar 

  • Speer R, Wulfkuhle JD, Liotta LA et al (2005) 3rd reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 7:240–245

    CAS  PubMed  Google Scholar 

  • Speers AE, Wu CC (2007) Proteomics of integral membrane proteins theory and application. Chem Rev 107(8):3687–3714

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–151

    Article  CAS  Google Scholar 

  • Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 9:S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  • Vadivel AK (2015) Gel-based proteomics in plants: time to move on from the tradition. Front Plant Sci 6:369

    Google Scholar 

  • Valcu CM, Junqueira M, Shevchenko A (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    Article  CAS  PubMed  Google Scholar 

  • Veenstra TD, Smith RD (eds) (2003) Proteome characterization and proteomics. Academic, San Diego

    Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP et al (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspension undergoing rice yellow mottle virus infection. Proteomics 1:216–225

    Article  CAS  Google Scholar 

  • Wang L, Jiang W, Zhang Y et al (2013) Ax21-triggered immunity plays a significant role in rice defense against Xanthomonas oryzae pv. oryzicola. Phytopathology. https://doi.org/10.1094/PHYTO-12-12-0333-R

  • Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  CAS  PubMed  Google Scholar 

  • Westermeier R (2006) Electrophoresis in practice. Wiley, Weinheim

    Google Scholar 

  • White IR, Pickford R, Wood J et al (2004) Statistical comparison of silver and SYPRO ruby staining for proteomic analysis. Electrophoresis 17:3048–3054

    Article  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  CAS  PubMed  Google Scholar 

  • Wittmann-Liebold H, Graack HR, Pohl T (2006) Two dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 17:4688–4703

    Article  Google Scholar 

  • Yajima W, Kav NN (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6:5995–6007

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Melo-Braga MN, Larsen MR et al (2013) Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics 12:2497–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Li W, Derbyshire M et al (2015) Unraveling proteomics and Phosphoproteomics. Mol Cell Proteomics 12:2497–2508. incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics. BMC Genomics 16:362

    Article  CAS  Google Scholar 

  • Yates IJR, Gilchrist A, Howell KE et al (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6(9):702–714

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Ranish JA, Watts JD et al (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 20(5):512–515

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006a) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6(16):4599–4609

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Kolb FL, Riechers DE (2006b) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48(5):770–780

    Article  Google Scholar 

  • Zhu H, Bilgin M, Bangham R et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 1:783–812

    Article  CAS  Google Scholar 

  • Zhu W, Smith JW, Huang CM (2009) Mass spectrometry- based label-free quantitative proteomics. J Biomed Biotechnol 2010:Article ID: 840581

    Google Scholar 

  • Zhu M, Simons B, Zhu N et al (2010) Analysis of abscisic acid responsive proteins in brassica Napus guard cells by multiplexed isobaric tagging. J Proteome 73(4):790–805

    Article  CAS  Google Scholar 

  • Zhu N, Zhu M, Dai S et al (2012) An improved isotope-coded affinity tag technology for thiol redox proteomics. J Integr OMICS 2(1):17–23

    Google Scholar 

  • Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57:1501–1508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the kind help of Dr. Shalu Jain, Plant Pathology Division, North Dakota State University, Fargo, USA, for critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rustagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustagi, A., Singh, G., Agrawal, S., Gupta, P.K. (2018). Proteomic Studies Revealing Enigma of Plant–Pathogen Interaction. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_11

Download citation

Publish with us

Policies and ethics