Transcriptomic Studies Revealing Enigma of Plant-Pathogen Interaction

  • Zahoor Ahmed Wani
  • Nasheeman Ashraf


Plants being sessile organisms encounter numerous attacks by pathogens and pests with different lifestyles and modes of attack. In response, plants undergo cellular reprogramming in order to perceive these attacks and activate specific defense pathways. Plants possess extensive regulatory mechanisms which come into play during defense responses so as to coordinate the perception and activation of pathways specific to the type of pathogen in question. Further, many small molecule hormones play pivotal role in defense pathways and cross communicate with each other, thereby helping plant to finely regulate its response. This suggests that plant defense is controlled by intricate transcriptional regulatory network, therefore urging the need to develop genome- and transcriptome-based strategies to unravel these mechanisms. Transcriptomics has fuelled a better understanding of many biological processes and can therefore be used for understanding the host-pathogen interactions as well. Transcriptome analysis can provide more comprehensive picture of the pathways that come into play in response to different pathogens and also decipher the cascade of transcriptional events involved. This may also help in identifying the regulatory nodes in the transcriptional networks and understanding the hierarchical relationship between them. These resources in turn will help in understanding of the complex architecture of plant/host defense system which will have a long-term impact and value for crop improvement.


Pathogen Transcriptomics Metabolomics Defense Signaling 


  1. Aerts S, Haeussler M, van Vooren S, Griffith OL, Hulpiau P, Jones SJ, Montgomery SB, Bergman CM (2008) Text-mining assisted regulatory annotation. Genome Biol 9:R31PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:0027Google Scholar
  3. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  5. Bancroft I (2013) Association genetics and more from crop transcriptome sequences ISB news reportGoogle Scholar
  6. Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. PNAS, USA 106:8067–8072CrossRefGoogle Scholar
  7. Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microb Interact 20:1406–1420CrossRefGoogle Scholar
  8. Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST – database for “expressed sequence tags”. Nat Genet 10:369–371CrossRefGoogle Scholar
  9. Brady SM, Long TA, Benfey PN (2006) Unraveling the dynamic transcriptome. Plant Cell 18(9):2101–2111PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA (2003) ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31:68–71PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546PubMedCrossRefGoogle Scholar
  12. Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20C:35–46CrossRefGoogle Scholar
  13. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050PubMedCrossRefGoogle Scholar
  14. Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31(1):86–96PubMedGoogle Scholar
  15. Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837PubMedCrossRefGoogle Scholar
  16. Cao WL, Chu RZ, Zhang Y, Luo J, Su YY et al (2015) OsJAMyb, a R2R3-type MYB transcription factor, enhanced blast resistance in transgenic rice. Physiol Mol Plant Pathol 83:79–99Google Scholar
  17. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) BMC Genomics 11:569–586PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang C (2003) Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci 8:365–368PubMedCrossRefGoogle Scholar
  19. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9:561PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677PubMedCrossRefGoogle Scholar
  22. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD et al (2008) Regulation and function of ArabidopsisJASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964. PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cominelli E et al (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200PubMedCrossRefGoogle Scholar
  25. Czechowski T, Bari RP, Stitt M, Scheible W, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific gene. Plant J 38:366–379PubMedCrossRefGoogle Scholar
  26. De Vos M, Van Oosten VR, Van Poecke RMP et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microb Interact 18:923–937CrossRefGoogle Scholar
  27. De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dey N, Sarkar S, Acharya S, Maiti IB (2015) Synthetic promoters in planta. Planta 242:1077–1094PubMedCrossRefGoogle Scholar
  29. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37PubMedCrossRefGoogle Scholar
  32. Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:354–359CrossRefGoogle Scholar
  33. Dou D, Zhou JM (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12(4):484–495PubMedCrossRefGoogle Scholar
  34. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  35. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15PubMedCrossRefGoogle Scholar
  37. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  38. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14(7):1457–1467PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gough C, Hemon P, Tronchet M, Lacomme C, Marco Y, Roby D (1995) Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements. Mol Gen Genet 247(3):323–337PubMedCrossRefGoogle Scholar
  40. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  41. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genom 4(3):139–162CrossRefGoogle Scholar
  42. Harlizius B, van Wijk R, Merks JW (2004) Genomics for food safety and sustainable animal production. J Biotechnol 113(1–3):33–42PubMedCrossRefGoogle Scholar
  43. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119PubMedCrossRefGoogle Scholar
  44. Hocquette JF (2005) Where are we in genomics. J Physiol Pharmacol 56:37–70PubMedGoogle Scholar
  45. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26(1):358–359PubMedPubMedCentralCrossRefGoogle Scholar
  46. Himmelbach A et al (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hruz T, Laule O, Szabo G, Wessendrop F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform e420747. doi:
  48. Hugot K, Riviere MP, Moreilhon C, Dayem MA, Cozzitorto J, Arbiol G, Barbry P, Weiss C, Galiana E (2004) Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes. Plant Physiol 134:858–870PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ibraheem F, Gaffoor I, Tan Q, Shyu CR, Chopra SA (2015) Sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules 20(2):2388–2404PubMedCrossRefGoogle Scholar
  51. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefGoogle Scholar
  52. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB gene family. Plant Mol Biol 41:577–585PubMedCrossRefGoogle Scholar
  53. Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187PubMedCrossRefGoogle Scholar
  54. Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G (2015) An Arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors. Mol Biol Evol 32(7):1767–1773PubMedPubMedCentralCrossRefGoogle Scholar
  55. Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138PubMedCrossRefGoogle Scholar
  56. Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim K-C, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IEA (2001) novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol 1(4):243–251Google Scholar
  60. Koo S et al (2009) Identification and characterization of alternative promoters of therice MAP kinase gene OsBWMK1. Mol Cells 27:467–473PubMedCrossRefGoogle Scholar
  61. Kovalchuk N, Li M, Wittek F, Reid N, Singh R, Shirley N, Ismagul A, Eliby S, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2010) Defensin promoters as potential tools for engineering dis-ease resistance in cereal grains. Plant Biotechnol J 8:47–64PubMedCrossRefGoogle Scholar
  62. Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 14:2347–2356PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lackman P, Gonzalez-Guzman M, Tilleman S et al (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS, USA 108:5891–5896CrossRefGoogle Scholar
  64. Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233PubMedCrossRefGoogle Scholar
  66. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Ann Rev Genet 34:77–137PubMedCrossRefGoogle Scholar
  67. Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809Google Scholar
  68. Lescot M, Déhais P, Gert Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lewis LA, Polanski K, Torres-Zabala M et al (2015) Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomatoDC3000. Plant Cell 27:3038–3064PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  71. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lipsick JS (1996) One billion years of Myb. Oncogene 13:223–235PubMedGoogle Scholar
  73. Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38(5):800–809PubMedCrossRefGoogle Scholar
  74. Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603PubMedCrossRefGoogle Scholar
  75. Liu R, Lü B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a hairpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biosci 35:435–450PubMedCrossRefGoogle Scholar
  76. Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64(8):2243–2253PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241PubMedCrossRefGoogle Scholar
  78. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410PubMedCrossRefGoogle Scholar
  79. Malnoy M, Venisse JS, Reynoird JP, Chevreau E (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta 216(5):802–814PubMedGoogle Scholar
  80. Marshall E (2004) Getting the noise out of gene arrays. Science 306:630–631PubMedCrossRefGoogle Scholar
  81. Martini N, Egen M, Rüntz I, Strittmatter G (1993) Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol GenGenet 236(2):179–186CrossRefGoogle Scholar
  82. Mathers JC (2004) What can we expect to learn from genomics? Proc Nutr Soc 63:1–4PubMedCrossRefGoogle Scholar
  83. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mengiste T et al (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565PubMedPubMedCentralCrossRefGoogle Scholar
  85. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, KhN I, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528PubMedPubMedCentralCrossRefGoogle Scholar
  86. Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262PubMedPubMedCentralCrossRefGoogle Scholar
  88. Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.) PLoS One 9(10):e109920PubMedPubMedCentralCrossRefGoogle Scholar
  89. Narusaka Y et al (2003) The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol 44:377–387PubMedCrossRefGoogle Scholar
  90. Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869PubMedCrossRefGoogle Scholar
  91. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activ-ity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812PubMedCrossRefGoogle Scholar
  92. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363Google Scholar
  93. Olivas NHD, Coolen S, Huang P et al (2016) Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. New Phytol 210(4):1344–1356CrossRefGoogle Scholar
  94. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 50(4):1648–1655CrossRefGoogle Scholar
  95. Peng J, Bao Z, Li P, Chen G, Wang J, Dong H (2004) HarpinXoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sin 46:1083–1090Google Scholar
  96. Périer RC, Junier T, Bucher P (1998) The eukaryotic promoter database EPD. Nucleic Acids Res 26:353–357CrossRefGoogle Scholar
  97. Pontier D, Godiard L, Marco Y, Roby D (1994) hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 5(4):507–521PubMedCrossRefGoogle Scholar
  98. Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. In: The NCBI handbook. Bethesda.
  99. Puhringer H, Dieter Moll D, Hoffmann-Sommergruber K, Watillon B, Katinger H, Machado MLC (2000) The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress-and pathogen-inducible. Plant Sci 152:35–50CrossRefGoogle Scholar
  100. Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551PubMedGoogle Scholar
  101. Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9(5):544–549PubMedCrossRefGoogle Scholar
  102. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5(2):94–100PubMedCrossRefGoogle Scholar
  103. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54PubMedCrossRefGoogle Scholar
  104. Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol 166:1186–1199PubMedPubMedCentralCrossRefGoogle Scholar
  105. Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147PubMedPubMedCentralCrossRefGoogle Scholar
  106. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  107. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8(7):321–329PubMedCrossRefGoogle Scholar
  109. Rudd S, Mewes HW, Mayer KF (2003) Sputnik: a database platform for comparative plant genomics. Nucleic Acids Res 31:128–132PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700PubMedPubMedCentralGoogle Scholar
  111. Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762PubMedPubMedCentralCrossRefGoogle Scholar
  112. Samson D, Legeai F, Karsenty E, Reboux S, Veyrieras JB, Just J, Barillot E (2003) GénoPlante-info (GPI): a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Res 31(1):179–182PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sardesai N, Laluk K, Mengiste T, Gelvin S (2014) The Arabidopsis Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to Agrobacterium. Plant Signal Behav 30:9Google Scholar
  114. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary- DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  115. Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184PubMedCrossRefGoogle Scholar
  116. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96PubMedCrossRefGoogle Scholar
  117. Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483PubMedCrossRefGoogle Scholar
  118. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117PubMedPubMedCentralCrossRefGoogle Scholar
  119. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43PubMedCrossRefGoogle Scholar
  120. Thangasamy S, Chen PW, Lai MH, Chen J, Jauh GY (2012) Rice LGD1 contain-ing RNA binding activity affects growth and development through alternative promoters. Plant J 71:288–302PubMedCrossRefGoogle Scholar
  121. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  122. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163PubMedCrossRefGoogle Scholar
  123. Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465PubMedCrossRefGoogle Scholar
  124. Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206(3):932–947PubMedCrossRefGoogle Scholar
  125. Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense related gene PcPR1-1 in parsley. Plant Cell 16:2573–2585PubMedPubMedCentralCrossRefGoogle Scholar
  126. van de Löcht U, Meier I, Hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9(9):2945–2950PubMedPubMedCentralGoogle Scholar
  127. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297PubMedCrossRefGoogle Scholar
  128. van Verk MC, Bol JF, Linthorst HJM (2011) Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol 11:88PubMedPubMedCentralCrossRefGoogle Scholar
  129. Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM (2013) RNA-seq: revelation of the messengers. Trends Plant Sci 18:175–179PubMedCrossRefGoogle Scholar
  130. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55PubMedCrossRefGoogle Scholar
  131. Vincentz M, Cara FAA, Okura VK et al (2004) Evaluation of monocot and eudicot divergence using the sugarcane transcriptome. Plant Physiol 134:951–959. PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wang Z, Yang P, Fan B, Chen Z (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J 16:515–552PubMedCrossRefGoogle Scholar
  133. Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2(7):e117. PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339PubMedCrossRefGoogle Scholar
  135. Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J (2016) Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529(7587):496–501PubMedCrossRefGoogle Scholar
  136. Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241PubMedPubMedCentralCrossRefGoogle Scholar
  137. Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487PubMedCrossRefGoogle Scholar
  138. Yang HJ, Yang SH, Li YQ, Hua J (2007) The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol 145:135–146PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508PubMedCrossRefGoogle Scholar
  140. Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol 196(4):1155–1170PubMedCrossRefGoogle Scholar
  141. Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.) Theor Appl Genet 124(1):87–96PubMedCrossRefGoogle Scholar
  142. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749–760Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Plant Biotechnology DivisionCSIR—Indian Institute of Integrative MedicineSrinagarIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIR—Indian Institute of Integrative MedicineJammu TawiIndia

Personalised recommendations