Skip to main content

Advanced Numerical Methods for the Assessment of Integrated Gasification and CHP Generation Technologies

  • Chapter
  • First Online:
Coal and Biomass Gasification

Abstract

The chapter gives an overview of new techniques developed and used in coal, biomass and waste materials gasification. All of the above-mentioned materials have similar properties for hydrocarbon content. As a consequence, most of them are used for power and heat generation through gasification technology. The chapter discusses advanced kinetic as well as computational fluid dynamics (CFD) modelling schemes valid for a wide range of coal and biomass materials using a downdraft gasifier. The models show validated results with experimental data. Underground coal gasification (UCG) is also discussed, modelled and verified to some extent. Applications leading to the combined heat and power (CHP) generation from syngas produced through the gasification of such feedstocks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Pre-exponential factor (s−1)

C :

Concentration (mol/m3)

D :

Diameter (m)

E :

Energy (kJ/mol)

H :

Enthalpy (kJ/mol)

K :

Kinetic constant (s−1)

M :

Molecular mass (kg/mol)

P :

Pressure (Pa)

GH :

Hearth Load (Nm3/(h m2))

T :

Temperature (K)

R :

Net rate of formation (mol m−3s−1)

V :

Volume (m3)

W :

Power (W)

c p :

Specific heat at const. pressure (J  mol−1 K−1)

m :

Mass (kg)

n :

No. of moles (mol)

r :

Reaction rate (mol m−3s−1)

t :

Time (s)

v :

Velocity (ms−1)

y :

Composition fraction

z :

Height (m)

h s :

Heat source (W/m2 K)

k i :

Reaction rate coefficient for reaction i

p ij :

Rate exponent of reacting species

J i :

The flux of species i

YY :

Mass stoichiometric coefficient

B :

Biomass

C :

Char

MC :

Moisture content (%)

A/F :

Air-to-fuel ratio

ER :

Equivalence ratio

CRF :

Char reactivity factor

HR :

Heating rate (K s−1)

G :

Gases

Nm 3 :

Normal cubic metre

py :

Pyrolysis

d :

Drying

f :

Fuel

g :

Gases

i :

Species

l :

Liquid

th :

Thermal

ρ :

Density

∑:

Summation

∆:

Change in state

β :

Temperature exponent

\( \tau_{ij} \) :

Stress tensor

\( \varGamma_{i} \) :

Fick diffusion coefficients

δ :

Kronecker delta

\( \rho g_{i} \) :

Gravitational body force

μ :

Viscosity (kg/m s)

σ :

Turbulent Prandtl number

References

  1. Basu P (2013) Biomass gasification, pyrolysis, and torrefaction. In: Practical design and theory, 2nd edn, Academic Press, Amsterdam

    Google Scholar 

  2. Climate Change (2013) The physical science basis, intergovernmental panel on climate change

    Google Scholar 

  3. United Nations Department of Economic and Social Affairs (2004) World population to 2300. United Nations, Department of Economic and Social Affair, New York

    Google Scholar 

  4. EIA (2012) International energy statistics database. www.qeia.gov/ies

  5. WBA (World Bioenergy Association) (2016) WBA global bioenergy statistics

    Google Scholar 

  6. http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS?end=2014&locations=GB&start=1960&view=chart&year_high_desc=false

  7. Bhutto AW, Bazmi AA, Zahedi G (2013) Underground coal gasification: from fundamentals to applications. Prog Energy Combust Sci 39(1):189–214

    Article  Google Scholar 

  8. Serranoa C, Monederoa E, Lapuertab M, Porteroa H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol 92(3):699–706

    Article  Google Scholar 

  9. Kataki R, Chutia RS, Mishra M, Bordoloi N, Saikia R, Bhaskarb T (2015) Recent advances in thermochemical conversion of biomass. Amsterdam, Netherlands, pp 31–64

    Google Scholar 

  10. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 171–193

    Google Scholar 

  11. Altafini CR, Wander PR, Barreto RM (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manag 44:2763–2777

    Article  Google Scholar 

  12. Budhathoki R (2003) Three zone modeling of downdraft biomass gasification: equilibrium and finite kinetic approach. MSC thesis, University of Jyväskylä

    Google Scholar 

  13. Channiwala SA, Ratnadhariya JK (2009) Three zone equilibrium and kinetic free modeling of biomass gasifier—a novel approach. Renew Energy 34(4):1050–1058

    Google Scholar 

  14. Dejtrakulwong C, Patumsawa S (2014) Four zones modeling of the downdraft biomass gasification process: effects of moisture content and air to fuel ratio. Energy Procedia 52:142–149

    Google Scholar 

  15. Zainal ZA, Ali R, Lean CH, Seetharamu KN (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag 42(12):1499–1515

    Google Scholar 

  16. Dutta A, Jarungthammachote S (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32:1660–1669

    Article  Google Scholar 

  17. Koroneos C, Lykidou S (2011) Equilibrium modeling for a dοwndraft biomass gasifier for cotton stalks biomass in comparison with experimental data. J Chem Eng Mater Sci 2(4):61–68

    Google Scholar 

  18. Vaezi M, Fard MP, Moghiman M (2007) On a numerical model for gasification of biomass materials. In: 1st WSEAS international conference on computational chemistry, cairo, egypt. 29–31 Dec 2007

    Google Scholar 

  19. Salem AM, Paul MC (2016) An integrated kinetic model for a downdraft gasifier based on a novel approach. Int J Adv Sci Eng Technol 4(3):182–185

    Google Scholar 

  20. Salem AM, Paul MC (2017) Integrated kinetic modelling and design for downdraft gasifiers based on a novel approach. Biomass Bioenergy (under revision)

    Google Scholar 

  21. Roy PC, Chakraborty N (2009) Modelling of a downdraft biomass gasifier with finite rate kinetics in the reduction zone. Int J Energy Res 833–51

    Google Scholar 

  22. Koufopanosi CA, Maschio G, Lucchesit A (1989) Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67

    Google Scholar 

  23. Babu BV, Chaurasia AS (2003) Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass. Energy Convers Manag 44:2135–2158

    Article  Google Scholar 

  24. Sharma AK (2011) Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation. Energy Convers Manag 52:1386–1396

    Google Scholar 

  25. Tinaut FV, Melgar A, Pérez JF, Horrillo A (2008) Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process Technol 89:1076–1089

    Article  Google Scholar 

  26. Bridgewater R, Shand A (1984) Fuel gas from biomass: status and new modeling approaches. In: Thermochemical processing of biomass, pp 229–254

    Google Scholar 

  27. Giltrap DL, McKibbin R, Barnes GRC (2003) A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol Energy 74:85–91

    Article  Google Scholar 

  28. Kinoshita CM, Wang Y (1993) Kinetic model of biomass gasification. Solar Energy 51(1):19–25

    Google Scholar 

  29. Armin Silaen TW (2010) Effect of turbulence and devolatilization models on coal gasification simulation in an entrained flow gasifier. Int J Heat Mass Transf 53:2074–2091

    Google Scholar 

  30. Chan MC (2000) Numerical simulation of entrained flow coal gasifer—Part II: Effects of operating conditions on gasifier performance. Chem Eng Sci 55:3875–3883

    Article  Google Scholar 

  31. Chan MC (2000) Numerical simulation of entrained flow coal gasifiers—Part I: Modeling of coal gasification in an entrained flow gasifier. Chem Eng Sci 55:3861–3874

    Article  Google Scholar 

  32. Chen CJ (2012) Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Appl Energy 100:218–228

    Article  Google Scholar 

  33. ANSYS Inc (2013) ANSYS 15 fluent theory guide, Canonsburg, PA 15317

    Google Scholar 

  34. Kumar U, Salem AM, Paul MC (2017) Investigating the thermochemical conversion of biomass in a downdraft gasifier with a volative break-up approach. In: 9th international conference on applied energy (ICAE2017), Cardiff, UK

    Google Scholar 

  35. Janajreh MS (2013) Numerical and experimental investigation of downdraft gasification of wood chips. Energy Convers Manag 65:783–792

    Article  Google Scholar 

  36. Paul MC (2016–2017) Farm waste utilisation: robust thermal engineering approach for generating energy from wastes. http://www.combgen.gla.ac.uk/index.php?id=news&post=common-interest-group-on-farm-waste-utilisation

  37. The National Non-Food Crops Centre, National and regional supply/demand balance for agricultural straw in Great Britain

    Google Scholar 

  38. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Biores Technol 83(1):55–63

    Article  Google Scholar 

  39. Jayah TH, Aye L, Fuller RJ, Stewart DF (2003) Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy 45:459–469

    Article  Google Scholar 

  40. Dutta PP, Pandey V, Das AR, Sen S, Baruah DC (2014) Down draft gasification modelling and experimentation of some indigenous biomass for thermal applications. Energy Procedia 54:21–34

    Article  Google Scholar 

  41. Mendiburu AZ, Carvalho JA, Coronado CJR (2013) Thermochemical equilibrium modeling of biomass downdraft gasifier: stoichiometric models. Energy 66:1–13

    Google Scholar 

  42. Sutardi T, Paul MC, Karimi N, Younger PL (2017) Identifying kinetic parameters for char combustion of a single coal particle. In: Proceeding of the European combustion meeting, Dubrovnik, Croatia, 18–21 April 2017

    Google Scholar 

  43. Sutardi T, Paul MC, Karimi N, Younger PL (2017) Numerical modelling for process investigation of a single coal particle combustion and gasification. In: Proceedings of the World Congress on Engineering, vol II. London 5–7 July 2017, pp 946–951. ISBN:978-988-14048-3-1

    Google Scholar 

Download references

Acknowledgements

Financial support for the research work presented in this chapter is received from the Innovate UK (132362, TS/N011686/1), Interface Food and Drink (IFD0190) and University of Glasgow KE Fund (GKE100). AMS, ANI and TS also thank, respectively, the British Embassy in Egypt and The Egyptian Cultural Affairs and Missions Sector, the Malaysian Government Majlis Amanah Rakyat (MARA) and the Ministry of Research and Higher Education (KEMENRISTEKDIKTI) Republic of Indonesia, for supporting their postgraduate research study at the University of Glasgow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manosh C. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, A.M., Kumar, U., Izaharuddin, A.N., Dhami, H., Sutardi, T., Paul, M.C. (2018). Advanced Numerical Methods for the Assessment of Integrated Gasification and CHP Generation Technologies. In: De, S., Agarwal, A., Moholkar, V., Thallada, B. (eds) Coal and Biomass Gasification. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7335-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7335-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7334-2

  • Online ISBN: 978-981-10-7335-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics