Skip to main content

PAHs in Gas and Particulate Phases: Measurement and Control

  • Chapter
  • First Online:
Environmental Contaminants

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds with two to seven fused benzene rings in a linear or angular arrangement. PAHs, having ubiquitous presence, are extensively reported and have carcinogenic potential, low aqueous solubility and semi-volatile nature and have been recognized as persistent toxic substances (PTS). Therefore, they are of considerable environmental concern. Combustion of fuels of all types including wood, coke and gas is the major anthropogenic activities that produce PAHs, while forest fires and volcanic eruptions are the natural sources. PAHs with low molecular weight dominate in the gaseous phase and are considered less toxic to humans, whereas PAHs with high molecular weight due to their low vapour pressures remain in particulate phase and are carcinogenic and/or mutagenic. PAHs with low molecular weight are much more abundant and can react with other pollutants such as O3 and NOx to form highly toxic nitrated and oxy-PAH compounds. The various factors that govern the atmospheric partitioning of PAHs are ambient temperature, relative humidity, aerosol nature and its properties, interactions between the compound and the aerosol. The sources of PAHs and their quantitative contributions to a particular region are a matter of concern. In the environment, they occur as complex mixtures and not as single compounds. The two important parameters that provide a basis for identifying PAH sources are the differences in the pattern of PAH mixtures and their concentration ratios. The development of appropriate strategies for adequate and effective control measures requires identification of sources and their quantitative contributions in a region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107–123

    Article  Google Scholar 

  • Aggarwal AL, Raiyani CV, Patel PD, Shah PG, Chatterjee SK (1982) Assessment of exposure to benzo(a)-pyrene in air for various population groups in Ahmedabad. Atmos Environ 16:867–870

    Article  CAS  Google Scholar 

  • Ahmed TM, Bergvall C, Aberg M, Westerholm R (2015) Determination of oxygenated and native polycyclic aromatic hydrocarbons in urban dust and diesel particulate matter standard reference materials using pressurized liquid extraction and LC-GC/MS. Anal Bioanal Chem 407:427–438

    Article  CAS  Google Scholar 

  • Akyuz M, Cabuk H (2010) Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408:5550–5558

    Article  CAS  Google Scholar 

  • Albinet A, Leoz -GE, Budzinski H, Villenave E, Jaffrezo JL (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: particle-size distribution. Atmos Environ 42:55–64

    Article  CAS  Google Scholar 

  • Alexandrou N, Smith N, Park R, Lumb K, Brice K (2001) The extraction of polycyclic aromatic hydrocarbons from atmospheric particulate matter samples by accelerated solvent extraction (ASE). Int J Environ Anal Chem 81:257–280

    Article  CAS  Google Scholar 

  • Alshawabkeh AN, Sarahney H (2005) Effect of current density on enhanced transformation of naphthalene. Environ Sci Technol 39:5837–5843

    Article  CAS  Google Scholar 

  • Alves CA, Vicente AMP, Gomes J, Nunes T, Duarte M, Bandowe BAM (2016) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmos Res 180:128

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez -RJ, Beck AJ (2006a) Bioremediation of polycyclic hydrocarbons (PAH) in an aged coal tar contaminated soil using in-vessel composting approaches. J Hazard Mater 137:1583–1588

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez -RJ, Beck AJ (2006b) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal-tar contaminated soil under in-vessel composting conditions. Environ Pollut 141:459–468

    Article  CAS  Google Scholar 

  • Ballesteros R, Hernandez J, Lyons L (2009) Determination of PAHs in diesel particulate matter using thermal extraction and solid phase micro-extraction. Atmos Environ 43:655–662

    Article  CAS  Google Scholar 

  • Bandowe BAM, Meusel H, Huang R, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P (1998) Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environ Toxicol Chem 17(5):765–776

    Article  CAS  Google Scholar 

  • Benbrahim-Talla L, Baan RA, Grosse Y, Lauby-Secretan B, Ghissassi El, Bouvard F, Guha N, Loomis D, Straif K (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664

    Google Scholar 

  • Bente M, Sklorz M, Streibel T, Zimmermann R (2008) Online laser desorption- multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal Chem 80:8991–9004

    Article  CAS  Google Scholar 

  • Bernal-Martinez A, Carriere H, Patureau D, Delgene JP (2005) Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem 40:3244–3250

    Article  CAS  Google Scholar 

  • Brown AS, Brown RJC, Coleman PJ, Conolly C, Sweetman AJ, Jones KC et al (2013) Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks. Environ Sci Proces Impacts 15(1):199–215

    Google Scholar 

  • Campbell S, Paquin D, Awaya JD, Li QX (2002) Remediation of benzo (a) pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). Int J Phytorem 4:157–168

    Article  CAS  Google Scholar 

  • Canet R, Birnsting JG, Malcolm DG, Lopez -RJM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Biores Technol 76:113–117

    Article  CAS  Google Scholar 

  • Castells P, Santos FJ, Gaiceran MT (2003) Development of a sequential supercritical fluid extraction method for the analysis of nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in urban aerosols. J Chromatogr A 1010:141–151

    Article  CAS  Google Scholar 

  • Cecinato A, Repetto M, Guerriero E, Allegrini I (1998) Levels and sources of polynuclear aromatic hydrocarbons in the Genoa–Cornigliano area. In Brebbia CA, Ratto CF, Power H (eds) Proceedings of “Air PollutionVI”, WITPress, Southampton, Genoa, pp 587–596

    Google Scholar 

  • Chaspoul F, Barban G, Gallice P (2005) Simultaneous GC/MSs analysis of polycyclic aromatic hydrocarbons and their nitrated derivatives in atmospheric particulate matter from workplaces. Polycyclic Aromat Compd 25:157–167

    Article  CAS  Google Scholar 

  • Cheema SA, Khan MI, Shen C, Tang X, Farooq M, Chen L, Chen Y (2009) Degradation ofphenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 16:207–211

    Google Scholar 

  • Cheema SA, Khan MT, Tang X, Zhang C, Shen C, Malik Z, Chen Y (2008) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festica arundinacea). J Hazard Mater 9:191–195

    Google Scholar 

  • Chen SJ, Su HB, Chang JE, Lee WJ, Huang KL, Hsieh LT, Huang YC, Lin WY, Lin CC (2007) Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ 41:1209–1220

    Article  CAS  Google Scholar 

  • Chen Y, Cao J, Zhao J, Xu H, Arimoto R, Wang G, Han Y, Shen Z, Li G (2014) n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: concentrations, seasonal variations, and sources. Sci Total Environ 470:9–18

    Article  CAS  Google Scholar 

  • Chen Y, Du W, Shen G, Zhuo S, Zhu X, Shen H, Huang Y, Su S, Lin N, Pei L, Zheng X, Wu J, Duan Y, Wang X, Liu W, Wong M, Tao S (2016) Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: influence of household cooking energies. Indoor Air 27(1):169–178

    Article  CAS  Google Scholar 

  • Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum Virgatum). Environ Sci Technol 37:5778–5782

    Article  CAS  Google Scholar 

  • Chen Y-C, Lee W-J, Uang S-N, Lee S-H, Tsai P-J (2006) Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment. Atmos Environ 40:7589–7597

    Article  CAS  Google Scholar 

  • Choi K, Bae S, Lee W (2014) Degradation of pyrene in cetylpyridinium chloride-aided soil washing wastewater by pyrite fenton reaction. Chem Eng J 249:34–41

    Article  CAS  Google Scholar 

  • Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144

    CAS  Google Scholar 

  • Chung MY, Lazaro RA, Lim D, Jackson J, Lyon J, Rendulic D, Hasson AS (2006) Aerosol-borne quinines and reactive oxygen species generation by particulate matter extracts. Environ Sci Technol 40:4880–4886

    Article  CAS  Google Scholar 

  • Contreras-Ramos SM, lvarez BDA, Dendooven L (2008) Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biol Biochem 40:1954–1959

    Google Scholar 

  • Das N, Das D (2015) Strategies for remediation of polycyclic aromatic hydrocarbons from contaminated soil-an overview. J Crit Rev 2(1):20–25

    Google Scholar 

  • Delgado-Sabori JM, Aquilina N, Baker S, Harrad S, Meddings C, Harrison RM (2010) Determination of atmospheric particulate-phase polycyclic aromatic hydrocarbons from low volume air samples. Anal Methods 2:231–242

    Article  CAS  Google Scholar 

  • Dijkstra RJ, Martha CT, Ariese F, Brinkman UATh, Gooijer C (2001) On-line identification method in column liquid chromatography: UV resonance raman spectroscopy. Anal Chem 73:4977–4982

    Article  CAS  Google Scholar 

  • Dimashki M, Harrad S, Harrison RM (2000) Measurements of nitro-PAH in the atmospheres of two cities. Atmos Environ 34(15):2459–2469

    Article  CAS  Google Scholar 

  • Dong D, Li P, Li X, Xu C, Gong D, Zhang Y, Zhao Q, Li P (2010) Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation. Chem Eng J 158:378–383

    Article  CAS  Google Scholar 

  • Dooley MA, Taylor K, Allen B (1995) Composting of herbicide-contaminated soil in bioremediation of recalcitrant organics. Battelle Press, Columbus, Ohio

    Google Scholar 

  • Du W, Sun Y, Cao L, Huang J, Ji R, Wang X, Wu J, Zhu J, Guo H (2011) Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. J Hazard Mater 188:408–413

    Article  CAS  Google Scholar 

  • Dubey J, Kumari KM, Lakhani A (2015) Chemical characteristics and mutagenic activity of PM 2.5 at a site in the Indo-Gangetic plain, India. Ecotoxicol Environ Saf 114:75–83

    Article  CAS  Google Scholar 

  • Dubey J, Banerjee A, Meena RK, Kumari KM, Lakhani A (2014a). Characterization of polycyclic aromatic hydrocarbons in emissions of different mosquito coils. Bull Environ Contam Toxicol 92:650–654. doi:10.1007/s00128-014-1278-6

  • Dubey J, Kumari KM, Lakhani A (2014c) Identification of polycyclic aromatic hydrocarbons in atmospheric particles of PM10 at Agra, India. Int J Eng Tech Res 2, ISSN: 2321-0869

    Google Scholar 

  • Dubey, J., Singla, V., Kumari, K.M., Lakhani, A. (2014b). Polycyclic aromatic hydrocarbons in atmospheric particles of PM10 at Yamuna Nagar, Haryana, India. Int J Eng Tech Res ISSN: 2321-0869, Special Issue, 333–336

    Google Scholar 

  • European Union (2005) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official J 24 Eur Union L23:3–16

    Google Scholar 

  • Fabbri D, Vassura I (2006) Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. J Anal Appl Pyrol 75(2):150–158

    Article  CAS  Google Scholar 

  • Gadi R, Singh DP, Mandal TK, Saud T, Saxena M (2012) Emission estimates of particulate PAH from biomass fuels used in Delhi, India. Int J Hum Ecol Risk Assess 18(4):871–887

    Article  CAS  Google Scholar 

  • Gan S, Yap CL, Ng HK (2013) Investigation of the impacts of ethyl lactate based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. J Hazard Mater 262:691–700

    Article  CAS  Google Scholar 

  • Gil-Molto J, Varea M, Galindo N, Crespo J (2009) Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. J Chromatogr A 1216:1285–1289

    Article  CAS  Google Scholar 

  • Goi A, Trapido M (2004) Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environ Technol 25:155–164

    Article  CAS  Google Scholar 

  • Gomez-Alvarez M, Poznyak T, Rios-Leal E, Silva-Sanchez C (2012) Anthracene decomposition in soils by conventional ozonation. J Environ Manage 113:545–551

    Article  CAS  Google Scholar 

  • Gray MR, Banerjee DK, Dudas MJ, Pickard MA (2000) Protocols to enhance biodegradation of hydrocarbon contaminants in soil. Bioremediat J 4(4):249–257

    Article  CAS  Google Scholar 

  • Gundel LA, Lee VC, Kariawasam RRM, Stevens RK, Daisey JM (1995) Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmos Environ 29(14):1719–1733

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Ho KF, Wang XM, Zou SC (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    Article  CAS  Google Scholar 

  • Gurol MD, Singer PC (1982) Kinetics of ozone decomposition: a dynamic approach. Environ Sci Technol 16:377–383

    Article  CAS  Google Scholar 

  • Gustafson KE, Dickhut RM (1997) Gaseous exchange of polycyclic aromatic hydrocarbons across the air—water interface of Southern Chesapeake Bay. Environ Sci Technol 31(6):1623–1629

    Article  CAS  Google Scholar 

  • Haapea P, Tuhkanen T (2006) Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. J Hazard Mater B136:244–250

    Article  CAS  Google Scholar 

  • Hart KM, Pankow JF (1994) High-volume air sampler for particle and gas sampling. 2.Use of backup filters to correct for the adsorption of gas-phase polycyclic aromatic hydrocarbons to the front filter. Environ Sci Technol 28(4):655–661

    Article  CAS  Google Scholar 

  • Hawthorne SB, Grabanski CB, Martin E, Miller DJ (2000) Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J Chromatogr A 892(1–2):421–433

    Article  CAS  Google Scholar 

  • Hays MD, Smith ND, Kinsey J, Dong Y, Kariher P (2003) Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption e GC/MS. J Aerosol Sci 34:1061–1084

    Article  CAS  Google Scholar 

  • He J, Fan S, Meng Q, Sun Y, Zhang J, Zu F (2014) Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: distributions, sources and meteorological influences. Atmos Environ 89:207–215

    Article  CAS  Google Scholar 

  • Hong PK, Nakra S, Jimmy KCM, Hayes DF (2008) Pressure-assisted ozonation of PCB and PAH contaminated sediments. Chemosphere 72:1757–1764

    Article  CAS  Google Scholar 

  • Hutzler C, Luch A, Filser JG (2011) Analysis of carcinogenic polycyclic aromatic hydrocarbons in complex environmental mixtures by LC-APPI-MS/MS. Anal Chim Acta 702:218–224

    Article  CAS  Google Scholar 

  • Jain N, Singla V, Satsangi A, Pachauri T, Kumari KM, Lakhani A (2012) Polycyclic aromatic hydrocarbon emissions and mutagenicity assessment of exhaust from a diesel generator. J Hazard Toxic Radioactive Waste Manag 15(1):18–25

    Article  CAS  Google Scholar 

  • Kalberer M, Morrical BD, Sax M, Zenobi R (2002) Picogram quantitation of polycyclic aromatic hydrocarbons adsorbed on aerosol particles by two-step laser mass spectrometry. Anal Chem 74:3492–3497

    Article  CAS  Google Scholar 

  • Kameda T (2011) Atmospheric chemistry of polycyclic aromatic hydrocarbons and related compounds. J Health Sci 57(6):504–511

    Article  CAS  Google Scholar 

  • Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcelluar root tissue of ryegrass (Lolium multiflorum). BMC Plant Biol 10:1471–1477

    Article  CAS  Google Scholar 

  • Kannan GK, Kapoor SC (2004) Analysis of particles size fraction (PM10 and PM2.5) and PAH of urban ambient air. DRDO, Ministry of Defence, Delhi, India

    Google Scholar 

  • Karavalakis G, Deves G, Fontaras G, Stournas S, Samaras Z, Bakeas E (2010) The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89:3876–3883

    Article  CAS  Google Scholar 

  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, VonBaer D, Oyola P (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35: 2288–2294

    Google Scholar 

  • Kawanaka Y, Sakamoto K, Wang N, Yun SJ (2007) Simple and sensitive method for determination of nitrated polycyclic aromatic hydrocarbons in diesel exhaust particles by gas chromatography-negative ion chemical ionisation tandem mass spectrometry. J Chromatogr A 1163:312–317

    Article  CAS  Google Scholar 

  • Keyte IJ, Harrison RM, Lammel G (2013) Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons. Chem Soc Rev 42:9333

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29(4):533–542

    Article  CAS  Google Scholar 

  • Kim KH, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  Google Scholar 

  • Koua J, Li Z, Guo Y, Gao J, Yang M, Zoua Z (2010) Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN: ZnO solid solution-assisted process: Direct hole oxidation mechanism. J Mol Catal A: Chem 325:48–54

    Article  CAS  Google Scholar 

  • Krugly E, Martuzevicius D, Sidaraviciute R, Ciuzas D, Prasauskas T, Kauneliene V, Stasiulaitiene I, Kliucininkas L (2014) Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos Environ 82:298–306

    Article  CAS  Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkanen T (2005) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manage 78:382–391

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philip CJ (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Recent Adv Bioremediat 31:155–161

    CAS  Google Scholar 

  • Lakhani A (2012) Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India. Sci World J 781291. doi:10.1100/2012/781291

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic 624 hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Lee BD, Iso M, Hosomi M (2001) Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere 42:431–435

    Article  CAS  Google Scholar 

  • Lee WJ, Wang YF, Lin TC, Chen YY, Lin WC, Ku CC, Cheng JT (1995) PAH characteristics in the ambient air of traffic-source. Sci Total Environ 159(2–3):185–200

    Article  CAS  Google Scholar 

  • Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  • Letzel T, Poschl U, Wissiack R, Rosenberg E, Grasserbauer M, Niessner R (2001) Phenyl-modified reversed-phase liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry: a universal method for the analysis of partially oxidized aromatic hydrocarbons. Anal Chem 73:1634–1645

    Article  CAS  Google Scholar 

  • Li JL, Chen BH (2009) Effects of non-ionic surfactants on biodegradation of phenanthrene by marine bacteria of Neptunomnas naphthovorans. J Hazard Mater 162:66–73

    Article  CAS  Google Scholar 

  • Li R-J, Kou X-J, Geng H, Dong C, Cai Z-W (2014) Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan. Chin Chem Lett 25:663–666

    Article  CAS  Google Scholar 

  • Limu YLMABD, LiFu DLNT, Miti ABLY, Wang X, Ding X (2013) Autumn and wintertime polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 from Urumqi, China. Aerosol Air Qual Res 13:407–414

    CAS  Google Scholar 

  • Liu WX, Dou H, Wei ZW, Chang B, Qui WX, Liu Y, Shu T (2008) Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. Sci Total Environ 407:1436–1446

    Article  CAS  Google Scholar 

  • Liu Y, Sklorz M, Schnelle -KJ, Orasche J, Ferge T, Kettrup A, Zimmerman R (2006) Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: evaluation of sampling artifact. Chemosphere 62(11):1889–1898

    Article  CAS  Google Scholar 

  • Lu H, Zhu L, Zhu N (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43(4):978–983

    Article  CAS  Google Scholar 

  • Lung SCC, Liu CH (2015) Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. Sci Rep 5. doi:10.1038/srep12992

  • Luster-Teasleya S, Ubaka-Blackmoorea N, Masten SJ (2009) Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils. J Hazard Mater 167:701–706

    Article  CAS  Google Scholar 

  • Lv Y, Li X, Xu TT, Cheng TT, Yang X, Chen JM, Iinuma Y, Herrmann H (2016) Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. Atmos Chem Phys 16(5):2971–2983

    Article  CAS  Google Scholar 

  • Manariotis ID, Karapanagioti KH, Chrysikopoulo CY (2011) Degradation of PAHs by high frequency ultrasound. Water Res 45:2587–2594

    Article  CAS  Google Scholar 

  • Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035

    Article  CAS  Google Scholar 

  • Marchand N, Besombes J-L, Chevron N, Masclet P, Aymoz G, Jaffrezo J-L (2004) Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns. Atmos Chem Phys 4:1167–1181

    Article  CAS  Google Scholar 

  • Marr LC, Dzepina K, Jimenez JL, Riesen F, Bethel HL, Arey J, Gaffney JS, Marley NA, Molina LT, Molina MJ (2006) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmos Chem Phys 6:1733–1745

    Article  CAS  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. J Hazard Mater 177:190–198

    Article  CAS  Google Scholar 

  • Masih J, Singhvi R, Kumar K, Jain VK, Taneja A (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of Northern India. Aerosol Air Qual Res 12:515–525

    CAS  Google Scholar 

  • Masten SJ, Davies SHR (1997) Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. J Contam Hydrol 28:327–335

    Article  CAS  Google Scholar 

  • McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34:2080–2091

    Article  CAS  Google Scholar 

  • Miguel AH, De Andrade JB (1989) Rapid quantitation of ten polycyclic aromatic hydrocarbons in atmospheric aerosols by direct HPLC separation after ultrasonic acetonitrile extraction. Int J Environ Anal Chem 35:35–41

    Article  CAS  Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RB, Hering RA (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455

    Article  CAS  Google Scholar 

  • Miller-Schulze JP, Paulsen M, Toriba A, Hayakawa K, Simpson CD (2007) Analysis of 1- nitropyrene in air particulate matter standard reference materials by using two dimensional high performance liquid chromatography with online reduction and tandem mass spectrometry detection. J Chromatogr A 1167:154–160

    Google Scholar 

  • Mohanraj R, Dhanakumar S, Solaraj G (2012) Polycyclic aromatic hydrocarbons bound to PM 2.5 in urban Coimbatore, India with emphasis on source apportionment. Sci World J 2012. doi:10.1100/2012980843

  • Mohanraj R, Solaraj G, Dhanakumar S (2011a) Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ Sci Pollut Res 18:764–771

    Article  CAS  Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2011b) PM2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bull Environ Contam Toxicol 87:330–335

    Article  CAS  Google Scholar 

  • Moustafa YM, Shara SI (2009) Studies of seasonal variations on polycuclear aromatic hydrocarbons along the Nile River, Egypt. J Appl Sci Res 5:2349–2356

    CAS  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45:11–20

    Article  CAS  Google Scholar 

  • Nesterenko MA, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87:1186–1191

    Article  CAS  Google Scholar 

  • Oanh NTK, Albina DO, Ping L, Wang XK (2005) Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove-fuel systems in Asia. Biomass Bioenerg 28:579–590

    Article  CAS  Google Scholar 

  • Okuda T, Okamoto K, Tanaka S, Shen Z, Han Y, Huo Z (2010) Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi’an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Sci Total Environ 408:1909–1914

    Article  CAS  Google Scholar 

  • Pandey PK, Patel KS, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess 59:287–319

    Article  CAS  Google Scholar 

  • Pandey SK, Kim KH, Brown RJC (2011) A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. Trends Anal Chem 30(11):1716–1739

    Article  CAS  Google Scholar 

  • Pankow JF, Ligocki MP, Rosen ME, Isabelle LM, Hart KM (1988) Adsorption/thermal desorption with small cartridges for the determination of trace aqueous semivolatile organic compounds. Anal Chem 60(1):40–47

    Article  CAS  Google Scholar 

  • Park JS, Wade TL, Sweet S (2001) Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos Environ 35:3241–3249

    Article  CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2000) Soils and environmental quality. CRC Press, Boca Raton, FL

    Google Scholar 

  • Possanzini M, Palo VD, Gigliucci P, Sciano MCT, Cecinato A (2004) Determination of phase-distributed PAH in Rome ambient air by denuder/GC-MS method. Atmos Environ 38:1727–1734

    Article  CAS  Google Scholar 

  • Potter CL, Glaser JA, Chang LW, Meier JR, Dosani MA, Herrmann RF (1999) Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions. Environ Sci Technol 33:1717–1725

    Article  CAS  Google Scholar 

  • Pradham SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

    Article  Google Scholar 

  • Psillakis E, Goula G, Kalogerakis N, Mantzavinos D (2004) Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. J Hazard Mater B108:95–102

    Article  CAS  Google Scholar 

  • Raiyani CV, Shah SH, Desai NM, Venkaiah K, Patel JS, Parikh DJ, Kashyap SK (1993) Characterization and problems of indoor air pollution due to cooking stove smoke. Atmos Environ 27A:1643–1655

    Article  CAS  Google Scholar 

  • Rajput N, Lakhani A (2009a) Particle associated polycyclic aromatic hydrocarbons in urban air of Agra. Indian J Radio Space Phys 38:98–104

    CAS  Google Scholar 

  • Rajput N, Lakhani A (2009b) Measurement of polycyclic aromatic hydrocarbons at an industrial site in India. Environ Monit Assess 150:273–284

    Article  CAS  Google Scholar 

  • Rajput N, Lakhani A (2010) Measurements of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmosfera 23(2):165–183

    CAS  Google Scholar 

  • Rajput N, Lakhani A (2012) Particle associated polycyclic aromatic hydrocarbons (PAHS) in urban air of Agra. Polycyclic Aromat Compd 32(1):48–60

    Article  CAS  Google Scholar 

  • Rajput N, Khemani LD, Lakhani A (2009) PAHs and their carcinogenic potencies in diesel fuel and diesel generator exhaust. Hum Ecol Risk Assess 15:201–213

    Article  CAS  Google Scholar 

  • Rajput N, Pyari AA, Saini MK, Kumari KM, Lakhani A (2010) Assessment of PAH toxicity and mutagenicity in emissions from coal and biofuel combustion. J Environ Sci Eng 52(3):185–192

    Google Scholar 

  • Rajput P, Sarin MM, Rengarajan R, Singh D (2011) Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ 45(37):6732–6740

    Article  CAS  Google Scholar 

  • Rajput P, Sarin M, Kundu SS (2013) Atmospheric particulate matter (PM 2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmos Pollut Res 4(2):214–221

    Article  CAS  Google Scholar 

  • Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E, Bleux N, Bergmans P, Van Grieken R (2006a) Seasonal and site specific variation in vapor and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785

    Article  CAS  Google Scholar 

  • Ravindra K, Wauters E, Taygi SK, Mor S, Van Grieken R (2006b) Assessment of air quality after the implementation of CNG as fuel in public transport in Delhi, India. Environ Monit Assess 115:405–417

    Article  CAS  Google Scholar 

  • Reisen F, Arey J (2002) Reactions of hydroxyl radicals and ozone with acenaphthrene and acenaphthylene. Environ Sci Technol 36:4302–4311

    Article  CAS  Google Scholar 

  • Ringuet J, Leoz -GE, Budzinski H, Villenave E, Albinet A (2012) Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos Chem Phys 12:8877–8887

    Article  CAS  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138(2):234–251

    Article  CAS  Google Scholar 

  • Rivas FJ, Beltran FJ, Acedo B (2000) Chemical and photochemical degradation of acenaphthylene; intermediate identification. J Hazard Mater 75:89–98

    Article  CAS  Google Scholar 

  • Rivas J, Gimeno O, de la Calle RG, Beltran FJ (2009) Ozone treatment of PAH contaminated soils: operating variables effect. J Hazard Mater 169:509–515

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. Natural gas home applications. Environ Sci Technol 27:2736–2744

    Article  CAS  Google Scholar 

  • Schauer C, Niessner R, Poschl U (2003) Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ Sci Technol 37(13):2861–2868

    Article  CAS  Google Scholar 

  • Schubert P, Schantz MM, Sander LC, Wise SA (2003) Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/mass spectrometry. Anal Chem 75:234–246

    Article  CAS  Google Scholar 

  • Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B et al (2012) Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol 46:8123–8130

    Article  CAS  Google Scholar 

  • Shen G, Wang W, Yang Y, Ding J, Xue M, Min Y, Zhu C, Shen H, Li W, Wang B, Wang R, Wang X, Tao S, Russell AG (2011) Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. Environ Sci Technol 45:1206–1212

    Article  CAS  Google Scholar 

  • Shimmo M, Anttila P, Hartonen K, Hyotylainen T, Paatero J, Kulmala M, Riekkola ML (2004) Identification of organic compounds in atmospheric aerosol particles by on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry. J Chromatogr A 1022:151–159

    Article  CAS  Google Scholar 

  • Silva FS, Cristale J, André PA, Saldiva PH, Marchi MR (2010) PM 2.5 and PM 10: the influence of sugarcane burning on potential cancer risk. Atmos Environ 44(39):5133–5138

    Article  CAS  Google Scholar 

  • Singh DP, Gadi R, Mandal TK, Saud T, Saxena M, Sharma SK (2013) Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos Environ 68:120–126

    Article  CAS  Google Scholar 

  • Singla, V., Pachauri, T., Satsangi, A., Kumari, K.M., Lakhani, A. (2012). Characterization and mutagenicity assessment of PM2.5 and PM10 PAH at Agra, India. Polycyclic Aromat Compd 32(2). doi:10.1080/10406638.2012.657740

  • Slezakova K, Castro D, Delerue-Matos C, Morais S, do Carmo Pereira M (2014) Levels and risks of particulate-bound PAHs in indoor air influenced by tobacco smoke: a field measurement. Environ Sci Pollut Res 21(6):4492–4501

    Google Scholar 

  • Soo J-C, Monaghan K, Lee T, Kashon M, Harper M (2016) Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Sci Technol J Am Assoc Aerosol Res 50(1):76–87

    Article  CAS  Google Scholar 

  • Soper SA, McGown LB, Warner IM (1994) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 66:428R–444R

    Article  CAS  Google Scholar 

  • Stegmann R, Lotter S, Jeerenklage J (1991) Biological treatment of oil-contaminated soils in bioreactors. In: Hinchee RE, Olfenbuttel RF (eds) On-site bioreclamation processes for xenobiotic and hydrocarbon treatment. Butterworth-Heinemann, MA

    Google Scholar 

  • Straube WL, Nestler CC, Hansen LD, Ringleberg D, Pritchard PH, Jones -MJ (2003) Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol 23(2–3):179–196

    Article  CAS  Google Scholar 

  • Tang B, Isacsson U (2008) Analysis of Mono- and polycyclic aromatic hydrocarbons using solid-phase microextraction: state-of-the-art. Energy Fuels 22:1425–1438

    Article  CAS  Google Scholar 

  • Tsapakis M, Stephanou EG (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133(1):147–156

    Google Scholar 

  • Tsapakis M, Tsapakis M (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147–156

    Article  CAS  Google Scholar 

  • Tutino M, Di Gilio A, Laricchiuta A, Assennato G, de Gennaro G (2016) An improved method to determine PM-bound nitro-PAHs in ambient air. Chemosphere 161:463

    Article  CAS  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA (2013) Combined chemical and water hyacinth (Eichhornia crassipes) treatment of PAHs contaminated soil. Int J Sci Eng Res 4:1–12

    Google Scholar 

  • van Drooge BL, Nikolova I, Ballesta PP (2009) Thermal desorption gas chromatography-mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter. J Chromatogr A 1216:4030–4039

    Article  CAS  Google Scholar 

  • Venkataraman C, Negi G, Sardar SB, Rastogi R (2002) Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion. Aerosol Sci 33:503–518

    Article  CAS  Google Scholar 

  • Verma PK, Sah D, Kumari KM, Lakhani A (2017) Atmospheric concentrations and gas-particle partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs at Indo-Gangetic sites. Environ Sci Proces Impacts 19(8):1051–1060

    Google Scholar 

  • Villar-Vidal M, Lertxundi A, de Dicastillo MDML, Alvarez JI, Marina LS, Ayerdi M, Basterrechea M, Ibarluzea J (2014) Air Polycyclic Aromatic Hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment. Chemosphere 99:233–238

    Article  CAS  Google Scholar 

  • Wang W, Huang M, Chan C-Y, Cheung KC, Wong MH (2013) Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the Implications from human hair. Atmos Environ 73:204–213

    Article  CAS  Google Scholar 

  • Wang XK, Chen GH, Yao ZY (2003) Sonochemical degradation of polychlorinated biphenyls in aqueous solution. Chin Chem Lett 14:205–208

    CAS  Google Scholar 

  • Wauters E, Caeter PV, Desmet G, David F, Devos C, Sandra P (2008) Improved accuracy in the determination of polycyclic aromatic hydrocarbons in air using 24 h sampling on a mixed bed followed by thermal desorption capillary gas chromatography–mass spectrometry. J Chromatogr A 1190(1–2):286–293

    Google Scholar 

  • Wenger D, Gerecke AC, Heeb NV, Schmid P, Hueglin C, Naegeli H, Zanobi R (2009) In vitro estrogenicity of ambient particulate matter: contribution of hydroxylated polycyclic aromatic hydrocarbons. J Appl Toxicol 29:223–232

    Article  CAS  Google Scholar 

  • Wheat PH, Tumeo MA (1997) Solid-phase micro-extraction to monitor the sonochemical degradation of polycyclic aromatic hydrocarbons in water. Ultrason Sonochem 4:55–59

    Article  CAS  Google Scholar 

  • White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediaton of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • WHO (2006) Air quality guidelines, Global update 2005, World Health Organisation, Bonn

    Google Scholar 

  • Wu D, Wang Z, Chen J, Kong S, Fu X, Deng H, Shao G, Wu G (2014) Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM 2.5 and PM 10 at a coal-based industrial city: implication for PAH control at industrial agglomeration regions, China. Atmos Res 149:217–229

    Article  CAS  Google Scholar 

  • Yang X, Igarashi K, Tang N, Lin JM, Wang W, Kameda T, Toriba A, Hayakawa K (2010) Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons. Mutat Res 695:29–34

    Article  CAS  Google Scholar 

  • You HT, Shen T, Yin CZ (2012) Determination of polycyclic aromatic hydrocarbons in non-carcinogenic rubber oil by gas chromatography-mass spectrometry. Shandong Chem Ind 1:010

    Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang H, Hu D, Chen J, Ye X, Wang SX, Hao JM, Wang L, Zhang N, An Z (2011) Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ Sci Technol 45:5477–5482

    Article  CAS  Google Scholar 

  • Zhang H, Ye X, Cheng T, Chen JM, Yang X, Wang L, Zhang RY (2008a) A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmos Environ 42:8432–8441

    Article  CAS  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008b) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484

    Article  CAS  Google Scholar 

  • Zhang M, Xie JF, Wang ZT, Zhao LJ, Zhang H, Li M (2016) Determination and source identification of priority polycyclic aromatic hydrocarbons in PM2.5 in Taiyuan, China. Atmos Res 178–179

    Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 2009(43):812–819

    Article  CAS  Google Scholar 

  • Zheng XJ, Blais JF, Mercier G, Bergeron M, Drogui P (2007) PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere 68:1143–1152

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2007) Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system. Environ Pollut 147:66–73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST Project Grant (No. SB/S4/AS-150/2014). The authors also thank the Head, Department of Chemistry, and Director of the institute for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maharaj Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharaj Kumari, K., Lakhani, A. (2018). PAHs in Gas and Particulate Phases: Measurement and Control. In: Gupta, T., Agarwal, A., Agarwal, R., Labhsetwar, N. (eds) Environmental Contaminants. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7332-8_3

Download citation

Publish with us

Policies and ethics