Advertisement

Zic family pp 107-140 | Cite as

Amphibian Zic Genes

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1046)

Abstract

Studies in Xenopus laevis have greatly contributed to understanding the roles that the Zic family of zinc finger transcription factors play as essential drivers of early development. Explant systems that are not readily available in other organisms give Xenopus embryos a unique place in these studies, facilitated by the recent sequencing of the Xenopus laevis genome. A number of upstream regulators of zic gene expression have been identified, such as inhibition of BMP signaling, as well as calcium, FGF, and canonical Wnt signaling. Screens using induced ectodermal explants have identified genes that are direct targets of Zic proteins during early neural development and neural crest specification. These direct targets include Xfeb (also called glipr2; hindbrain development), aqp3b (dorsal marginal zone in gastrula embryos and neural folds), snail family members (premigratory neural crest), genes that play roles in retinoic acid signaling, noncanonical Wnt signaling, and mesoderm development, in addition to a variety of genes some with and many without known roles during neural or neural crest development. Functional experiments in Xenopus embryos demonstrated the involvement of Zic family members in left-right determination, early neural patterning, formation of the midbrain-hindbrain boundary, and neural crest specification. The role of zic genes in cell proliferation vs. differentiation remains unclear, and the activities of Zic factors as inhibitors or activators of canonical Wnt signaling may be dependent on developmental context. Overall, Xenopus has contributed much to our understanding of how Zic transcriptional activities shape the development of the embryo and contribute to disease.

Keywords

Zic genes Xenopus 

References

  1. Andoniadou CL, Signore M, Young RM, Gaston-Massuet C, Wilson SW, Fuchs E, Martinez-Barbera JP (2011) HESX1- and TCF3-mediated repression of Wnt/β-catenin targets is required for normal development of the anterior forebrain. Development 138(22):4931–4942.  https://doi.org/10.1242/dev.066597 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andreazzoli M, Gestri G, Cremisi F, Casarosa S, Dawid IB, Barsacchi G (2003) Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. Development 130(21):5143–5154.  https://doi.org/10.1242/dev.00665 PubMedCrossRefGoogle Scholar
  3. Aruga J, Mikoshiba K (2011) Role of BMP, FGF, calcium signaling, and Zic proteins in vertebrate neuroectodermal differentiation. Neurochem Res 36(7):1286–1292.  https://doi.org/10.1007/s11064-011-0422-5 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aruga J, Tohmonda T, Homma S, Mikoshiba K (2002) Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244(2):329–341.  https://doi.org/10.1006/dbio.2002.0598 PubMedCrossRefGoogle Scholar
  5. Aruga J, Kamiya A, Takahashi H, Fujimi TJ, Shimizu Y, Ohkawa K, Yazawa S, Umesono Y, Noguchi H, Shimizu T, Saitou N, Mikoshiba K, Sakaki Y, Agata K, Toyoda A (2006) A wide-range phylogenetic analysis of Zic proteins: implications for correlations between protein structure conservation and body plan complexity. Genomics 87(6):783–792.  https://doi.org/10.1016/j.ygeno.2006.02.011 PubMedCrossRefGoogle Scholar
  6. Aybar MJ, Nieto MA, Mayor R (2003) Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130(3):483–494PubMedCrossRefGoogle Scholar
  7. Bae CJ, Park BY, Lee YH, Tobias JW, Hong CS, Saint-Jeannet JP (2014) Identification of Pax3 and Zic1 targets in the developing neural crest. Dev Biol 386(2):473–483.  https://doi.org/10.1016/j.ydbio.2013.12.011 PubMedCrossRefGoogle Scholar
  8. Batut J, Vandel L, Leclerc C, Daguzan C, Moreau M, Néant I (2005) The Ca2+−induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci U S A 102(42):15128–15133.  https://doi.org/10.1073/pnas.0502483102 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blank MC, Grinberg I, Aryee E, Laliberte C, Chizhikov VV, Henkelman RM, Millen KJ (2011) Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 138(6):1207–1216.  https://doi.org/10.1242/dev.054114 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV (2014) Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 393(1):109–123.  https://doi.org/10.1016/j.ydbio.2014.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blum M, De Robertis EM, Wallingford JB, Niehrs C (2015) Morpholinos: antisense and sensibility. Dev Cell 35(2):145–149.  https://doi.org/10.1016/j.devcel.2015.09.017 PubMedCrossRefGoogle Scholar
  12. Böhm J, Buck A, Borozdin W, Mannan AU, Matysiak-Scholze U, Adham I, Schulz-Schaeffer W, Floss T, Wurst W, Kohlhase J, Barrionuevo F (2008) Sall1, sall2, and sall4 are required for neural tube closure in mice. Am J Pathol 173(5):1455–1463.  https://doi.org/10.2353/ajpath.2008.071039 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brewster R, Lee J, Ruiz i Altaba A (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393(6685):579–583.  https://doi.org/10.1038/31242 PubMedCrossRefGoogle Scholar
  14. Brown L, Paraso M, Arkell R, Brown S (2005) In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet 14(3):411–420.  https://doi.org/10.1093/hmg/ddi037 PubMedCrossRefGoogle Scholar
  15. Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA (2004) Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 131(23):5871–5881.  https://doi.org/10.1242/dev.01516 PubMedCrossRefGoogle Scholar
  16. Cast AE, Gao C, Amack JD, Ware SM (2012) An essential and highly conserved role for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis. Dev Biol 364(1):22–31.  https://doi.org/10.1016/j.ydbio.2012.01.011 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280(2):489–504.  https://doi.org/10.1111/j.1742-4658.2012.08716.x PubMedPubMedCentralCrossRefGoogle Scholar
  18. Caverzasio J, Biver E, Thouverey C (2013) Predominant role of PDGF receptor transactivation in Wnt3a-induced osteoblastic cell proliferation. J Bone Miner Res 28(2):260–270.  https://doi.org/10.1002/jbmr.1748 PubMedCrossRefGoogle Scholar
  19. Chhin B, Hatayama M, Bozon D, Ogawa M, Schön P, Tohmonda T, Sassolas F, Aruga J, Valard AG, Chen SC, Bouvagnet P (2007) Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Hum Mutat 28(6):563–570.  https://doi.org/10.1002/humu.20480 PubMedCrossRefGoogle Scholar
  20. Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS (2009) A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds. Dev Dyn 238(5):1179–1194.  https://doi.org/10.1002/dvdy.21953 PubMedCrossRefGoogle Scholar
  21. Davey CF, Moens CB (2017) Planar cell polarity in moving cells: think globally, act locally. Development 144(2):187–200.  https://doi.org/10.1242/dev.122804 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA (2006) The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development 133(1):63–74.  https://doi.org/10.1242/dev.02171 PubMedCrossRefGoogle Scholar
  23. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274(34):23695–23698PubMedCrossRefGoogle Scholar
  24. Ebert PJ, Timmer JR, Nakada Y, Helms AW, Parab PB, Liu Y, Hunsaker TL, Johnson JE (2003) Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130(9):1949–1959PubMedCrossRefGoogle Scholar
  25. Elms P, Siggers P, Napper D, Greenfield A, Arkell R (2003) Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264(2):391–406PubMedCrossRefGoogle Scholar
  26. Ermakova GV, Alexandrova EM, Kazanskaya OV, Vasiliev OL, Smith MW, Zaraisky AG (1999) The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. Development 126(20):4513–4523PubMedGoogle Scholar
  27. Feledy JA, Beanan MJ, Sandoval JJ, Goodrich JS, Lim JH, Matsuo-Takasaki M, Sato SM, Sargent TD (1999) Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev Biol 212(2):455–464.  https://doi.org/10.1006/dbio.1999.9374 PubMedCrossRefGoogle Scholar
  28. Forecki J, Van Antwerp D, Lujan S, Merzdorf C, Antwerp V (2018) Roles for Xenopus aquaporin-3b (aqp3.L) during gastrulation: fibrillar fibronectin and tissue boundary establishment in the dorsal margin. Dev Biol 433(1):3–16. https://doi: 10.1016/j.ydbio.2017.11.001 Google Scholar
  29. Franco PG, Paganelli AR, López SL, Carrasco AE (1999) Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126(19):4257–4265PubMedGoogle Scholar
  30. Fujimi TJ, Mikoshiba K, Aruga J (2006) Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family. Dev Dyn 235(12):3379–3386.  https://doi.org/10.1002/dvdy.20906 PubMedCrossRefGoogle Scholar
  31. Fujimi TJ, Hatayama M, Aruga J (2012) Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway. Dev Biol 361(2):220–231.  https://doi.org/10.1016/j.ydbio.2011.10.026 PubMedCrossRefGoogle Scholar
  32. Fukuda M, Takahashi S, Haramoto Y, Onuma Y, Kim YJ, Yeo CY, Ishiura S, Asashima M (2010) Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by nodal signaling and Eomesodermin. Int J Dev Biol 54(1):81–92.  https://doi.org/10.1387/ijdb.082837mf PubMedCrossRefGoogle Scholar
  33. Furushima K, Murata T, Matsuo I, Aizawa S (2000) A new murine zinc finger gene. Opr Mech Dev 98(1–2):161–164PubMedCrossRefGoogle Scholar
  34. Gamse JT, Sive H (2001) Early anteroposterior division of the presumptive neurectoderm in Xenopus. Mech Dev 104(1–2):21–36PubMedCrossRefGoogle Scholar
  35. Gaston-Massuet C, Henderson DJ, Greene ND, Copp AJ (2005) Zic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous system. Dev Dyn 233(3):1110–1115.  https://doi.org/10.1002/dvdy.20417 PubMedCrossRefGoogle Scholar
  36. Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA (2016) Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis 54(6):334–349.  https://doi.org/10.1002/dvg.22943 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gestri G, Carl M, Appolloni I, Wilson SW, Barsacchi G, Andreazzoli M (2005) Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development 132(10):2401–2413.  https://doi.org/10.1242/dev.01814 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67(4):290–296.  https://doi.org/10.1111/j.1399-0004.2005.00418.x PubMedCrossRefGoogle Scholar
  39. Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D (2010) Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Dev Biol 338(1):50–62.  https://doi.org/10.1016/j.ydbio.2009.11.024 PubMedCrossRefGoogle Scholar
  40. Hardwick LJ, Philpott A (2015) An oncologist’s friend: how Xenopus contributes to cancer research. Dev Biol 408(2):180–187.  https://doi.org/10.1016/j.ydbio.2015.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328(5978):633–636.  https://doi.org/10.1126/science.1183670 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Himeda CL, Barro MV, Emerson CP (2013) Pax3 synergizes with Gli2 and Zic1 in transactivating the Myf5 epaxial somite enhancer. Dev Biol 383(1):7–14.  https://doi.org/10.1016/j.ydbio.2013.09.006 PubMedCrossRefGoogle Scholar
  43. Hollemann T, Schuh R, Pieler T, Stick R (1996) Xenopus Xsal-1, a vertebrate homolog of the region specific homeotic gene spalt of Drosophila. Mech Dev 55(1):19–32PubMedCrossRefGoogle Scholar
  44. Hong CS, Saint-Jeannet JP (2007) The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border. Mol Biol Cell 18(6):2192–2202.  https://doi.org/10.1091/mbc.E06-11-1047 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Houston DW, Wylie C (2005) Maternal Xenopus Zic2 negatively regulates nodal-related gene expression during anteroposterior patterning. Development 132(21):4845–4855.  https://doi.org/10.1242/dev.02066 PubMedCrossRefGoogle Scholar
  46. Houtmeyers R, Souopgui J, Tejpar S, Arkell R (2013) The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 70(20):3791–3811.  https://doi.org/10.1007/s00018-013-1285-5 PubMedCrossRefGoogle Scholar
  47. Houtmeyers R, Tchouate Gainkam O, Glanville-Jones HA, Van den Bosch B, Chappell A, Barratt KS, Souopgui J, Tejpar S, Arkell RM (2016) Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 25(18):3946–3959.  https://doi.org/10.1093/hmg/ddw235 PubMedCrossRefGoogle Scholar
  48. Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K (2004) Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 270(1):146–162.  https://doi.org/10.1016/j.ydbio.2004.02.017 PubMedCrossRefGoogle Scholar
  49. Jaurena MB, Juraver-Geslin H, Devotta A, Saint-Jeannet JP (2015) Zic1 controls placode progenitor formation non-cell autonomously by regulating retinoic acid production and transport. Nat Commun 6:7476.  https://doi.org/10.1038/ncomms8476 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Keller R, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103(1):193–209PubMedGoogle Scholar
  51. Keller R, Shih J, Sater AK, Moreno C (1992) Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn 193(3):218–234.  https://doi.org/10.1002/aja.1001930303 PubMedCrossRefGoogle Scholar
  52. Kelly LE, Carrel TL, Herman GE, El-Hodiri HM (2006) Pbx1 and Meis1 regulate activity of the Xenopus laevis Zic3 promoter through a highly conserved region. Biochem Biophys Res Commun 344(3):1031–1037.  https://doi.org/10.1016/j.bbrc.2006.03.235 PubMedCrossRefGoogle Scholar
  53. Kim HJ, Lee SK, Na SY, Choi HS, Lee JW (1998) Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2. Mol Endocrinol 12(7):1038–1047.  https://doi.org/10.1210/mend.12.7.0139 PubMedCrossRefGoogle Scholar
  54. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5(9):687–698.  https://doi.org/10.1038/nrm1469 PubMedCrossRefGoogle Scholar
  55. Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K (2000) Zic3 is involved in the left-right specification of the Xenopus embryo. Development 127(22):4787–4795PubMedGoogle Scholar
  56. Klein SL, Moody SA (2015) Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 53(5):308–320.  https://doi.org/10.1002/dvg.22854 PubMedCrossRefGoogle Scholar
  57. Kofent J, Spagnoli FM (2016) Xenopus as a model system for studying pancreatic development and diabetes. Semin Cell Dev Biol 51:106–116.  https://doi.org/10.1016/j.semcdb.2016.01.005 PubMedCrossRefGoogle Scholar
  58. Kolm PJ, Sive HL (1995) Efficient hormone-inducible protein function in Xenopus laevis. Dev Biol 171(1):267–272.  https://doi.org/10.1006/dbio.1995.1279 PubMedCrossRefGoogle Scholar
  59. Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K (2001) Physical and functional interactions between Zic and Gli proteins. J Biol Chem 276(10):6889–6892.  https://doi.org/10.1074/jbc.C000773200 PubMedCrossRefGoogle Scholar
  60. Kuo JS, Patel M, Gamse J, Merzdorf C, Liu X, Apekin V, Sive H (1998) Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125(15):2867–2882PubMedGoogle Scholar
  61. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL (2000) Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113(Pt 19):3519–3529PubMedGoogle Scholar
  62. Leclerc C, Lee M, Webb SE, Moreau M, Miller AL (2003) Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 261(2):381–390PubMedCrossRefGoogle Scholar
  63. Leclerc C, Néant I, Webb SE, Miller AL, Moreau M (2006) Calcium transients and calcium signaling during early neurogenesis in the amphibian embryo Xenopus laevis. Biochim Biophys Acta 1763(11):1184–1191.  https://doi.org/10.1016/j.bbamcr.2006.08.005 PubMedCrossRefGoogle Scholar
  64. Lepperdinger G (2000) Amphibian choroid plexus lipocalin, Cpl1. Biochim Biophys Acta 1482(1–2):119–126PubMedCrossRefGoogle Scholar
  65. Li S, Shin Y, Cho KW, Merzdorf CS (2006) The Xfeb gene is directly upregulated by Zic1 during early neural development. Dev Dyn 235(10):2817–2827.  https://doi.org/10.1002/dvdy.20896 PubMedCrossRefGoogle Scholar
  66. Li B, Kuriyama S, Moreno M, Mayor R (2009) The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136(19):3267–3278.  https://doi.org/10.1242/dev.036954 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lienkamp SS (2016) Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 51:117–124.  https://doi.org/10.1016/j.semcdb.2016.02.002 PubMedCrossRefGoogle Scholar
  68. Maeda R, Mood K, Jones TL, Aruga J, Buchberg AM, Daar IO (2001) Xmeis1, a protooncogene involved in specifying neural crest cell fate in Xenopus embryos. Oncogene 20(11):1329–1342.  https://doi.org/10.1038/sj.onc.1204250 PubMedCrossRefGoogle Scholar
  69. Maeda R, Ishimura A, Mood K, Park EK, Buchberg AM, Daar IO (2002) Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos. Proc Natl Acad Sci U S A 99(8):5448–5453. https://doi.org/10.1073/pnas.082654899
  70. Marchal L, Luxardi G, Thomé V, Kodjabachian L (2009) BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci U S A 106(41):17437–17442.  https://doi.org/10.1073/pnas.0906352106 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mattioni T, Louvion JF, Picard D (1994) Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol 43(Pt A):335–352PubMedCrossRefGoogle Scholar
  72. McMahon AR, Merzdorf CS (2010) Expression of the zic1, zic2, zic3, and zic4 genes in early chick embryos. BMC Res Notes 3:167.  https://doi.org/10.1186/1756-0500-3-167 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Merzdorf CS (2007) Emerging roles for zic genes in early development. Dev Dyn 236(4):922–940.  https://doi.org/10.1002/dvdy.21098 PubMedCrossRefGoogle Scholar
  74. Merzdorf CS, Sive HL (2006) The zic1 gene is an activator of Wnt signaling. Int J Dev Biol 50(7):611–617.  https://doi.org/10.1387/ijdb.052110cm PubMedCrossRefGoogle Scholar
  75. Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH (2013) Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc Natl Acad Sci U S A 110(14):5528–5533.  https://doi.org/10.1073/pnas.1219124110 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mizugishi K, Aruga J, Nakata K, Mikoshiba K (2001) Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 276(3):2180–2188.  https://doi.org/10.1074/jbc.M004430200 PubMedCrossRefGoogle Scholar
  77. Mizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J (2004) Myogenic repressor I-mfa interferes with the function of Zic family proteins. Biochem Biophys Res Commun 320(1):233–240.  https://doi.org/10.1016/j.bbrc.2004.05.158 PubMedCrossRefGoogle Scholar
  78. Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125(4):579–587PubMedGoogle Scholar
  79. Monsoro-Burq AH, Wang E, Harland R (2005) Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 8(2):167–178.  https://doi.org/10.1016/j.devcel.2004.12.017 PubMedCrossRefGoogle Scholar
  80. Moreau M, Néant I, Webb SE, Miller AL, Leclerc C (2008) Calcium signalling during neural induction in Xenopus laevis embryos. Philos Trans R Soc Lond Ser B Biol Sci 363(1495):1371–1375.  https://doi.org/10.1098/rstb.2007.2254 CrossRefGoogle Scholar
  81. Nagai T, Aruga J, Takada S, Günther T, Spörle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182(2):299–313.  https://doi.org/10.1006/dbio.1996.8449 PubMedCrossRefGoogle Scholar
  82. Nagel M, Tahinci E, Symes K, Winklbauer R (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131(11):2727–2736.  https://doi.org/10.1242/dev.01141 PubMedCrossRefGoogle Scholar
  83. Nakata K, Nagai T, Aruga J, Mikoshiba K (1997) Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci U S A 94(22):11980–11985PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nakata K, Nagai T, Aruga J, Mikoshiba K (1998) Xenopus Zic family and its role in neural and neural crest development. Mech Dev 75(1–2):43–51PubMedCrossRefGoogle Scholar
  85. Nakata K, Koyabu Y, Aruga J, Mikoshiba K (2000) A novel member of the Xenopus Zic family, Zic5, mediates neural crest development. Mech Dev 99(1–2):83–91PubMedCrossRefGoogle Scholar
  86. Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA (2012) Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev Biol 365(2):363–375.  https://doi.org/10.1016/j.ydbio.2012.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nie S, Bronner ME (2015) Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm. Cardiovasc Res 106(1):67–75.  https://doi.org/10.1093/cvr/cvv043 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nyholm MK, Wu SF, Dorsky RI, Grinblat Y (2007) The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development 134(4):735–746.  https://doi.org/10.1242/dev.02756 PubMedCrossRefGoogle Scholar
  89. Patthey C, Gunhaga L (2014) Signaling pathways regulating ectodermal cell fate choices. Exp Cell Res 321(1):11–16.  https://doi.org/10.1016/j.yexcr.2013.08.002 PubMedCrossRefGoogle Scholar
  90. Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261(5129):1701–1707PubMedCrossRefGoogle Scholar
  91. Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH (2014) Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 386(2):461–472.  https://doi.org/10.1016/j.ydbio.2013.12.010 PubMedCrossRefGoogle Scholar
  92. Pohl BS, Knochel W (2005) Of fox and frogs: fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344:21–32.  https://doi.org/10.1016/j.gene.2004.09.037 PubMedCrossRefGoogle Scholar
  93. Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S (2011) Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling. J Biol Chem 286(43):37732–37740.  https://doi.org/10.1074/jbc.M111.242826 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Purandare SM, Ware SM, Kwan KM, Gebbia M, Bassi MT, Deng JM, Vogel H, Behringer RR, Belmont JW, Casey B (2002) A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129(9):2293–2302PubMedGoogle Scholar
  95. Rhinn M, Brand M (2001) The midbrain – hindbrain boundary organizer. Curr Opin Neurobiol 11(1):34–42PubMedCrossRefGoogle Scholar
  96. Sakurada T, Mima K, Kurisaki A, Sugino H, Yamauchi T (2005) Neuronal cell type-specific promoter of the alpha CaM kinase II gene is activated by Zic2, a Zic family zinc finger protein. Neurosci Res 53(3):323–330.  https://doi.org/10.1016/j.neures.2005.08.001 PubMedCrossRefGoogle Scholar
  97. Salero E, Pérez-Sen R, Aruga J, Giménez C, Zafra F (2001) Transcription factors Zic1 and Zic2 bind and transactivate the apolipoprotein E gene promoter. J Biol Chem 276(3):1881–1888.  https://doi.org/10.1074/jbc.M007008200 PubMedCrossRefGoogle Scholar
  98. Sanchez-Ferras O, Bernas G, Laberge-Perrault E, Pilon N (2014) Induction and dorsal restriction of paired-box 3 (Pax3) gene expression in the caudal neuroectoderm is mediated by integration of multiple pathways on a short neural crest enhancer. Biochim Biophys Acta 1839(7):546–558.  https://doi.org/10.1016/j.bbagrm.2014.04.023 PubMedCrossRefGoogle Scholar
  99. Sasai Y, De Robertis EM (1997) Ectodermal patterning in vertebrate embryos. Dev Biol 182(1):5–20.  https://doi.org/10.1006/dbio.1996.8445 PubMedCrossRefGoogle Scholar
  100. Sasai Y, Lu B, Piccolo S, De Robertis EM (1996) Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J 15(17):4547–4555PubMedPubMedCentralGoogle Scholar
  101. Sasai N, Mizuseki K, Sasai Y (2001) Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128(13):2525–2536PubMedGoogle Scholar
  102. Sato T, Sasai N, Sasai Y (2005) Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 132(10):2355–2363.  https://doi.org/10.1242/dev.01823 PubMedCrossRefGoogle Scholar
  103. Schroeder TE (1970) Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J Embryol Exp Morpholog 23(2):427–462Google Scholar
  104. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343.  https://doi.org/10.1038/nature19840 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sive HL, Grainger RM, Harland RM (2007) Animal cap isolation from Xenopus laevis. CSH Protoc 2007:pdb.prot4744PubMedGoogle Scholar
  106. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124(14):2691–2700PubMedGoogle Scholar
  107. Stuhlmiller TJ, García-Castro MI (2012a) FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development 139(2):289–300.  https://doi.org/10.1242/dev.070276 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stuhlmiller TJ, García-Castro MI (2012b) Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 69(22):3715–3737.  https://doi.org/10.1007/s00018-012-0991-8 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sugimoto K, Okabayashi K, Sedohara A, Hayata T, Asashima M (2007) The role of XBtg2 in Xenopus neural development. Dev Neurosci 29(6):468–479.  https://doi.org/10.1159/000097320 PubMedCrossRefGoogle Scholar
  110. Sun Rhodes LS, Merzdorf CS (2006) The zic1 gene is expressed in chick somites but not in migratory neural crest. Gene Expr Patterns 6(5):539–545.  https://doi.org/10.1016/j.modgep.2005.10.006 PubMedCrossRefGoogle Scholar
  111. Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N (2003) The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 13(8):674–679PubMedCrossRefGoogle Scholar
  112. Tandon P, Conlon F, Furlow JD, Horb ME (2016) Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol.  https://doi.org/10.1016/j.ydbio.2016.04.009
  113. Tanibe M, Michiue T, Yukita A, Danno H, Ikuzawa M, Ishiura S, Asashima M (2008) Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis. Int J Dev Biol 52(7):893–901.  https://doi.org/10.1387/ijdb.082683mt PubMedCrossRefGoogle Scholar
  114. Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R (2003) Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130(26):6441–6452.  https://doi.org/10.1242/dev.00878 PubMedCrossRefGoogle Scholar
  115. Tropepe V, Li S, Dickinson A, Gamse JT, Sive HL (2006) Identification of a BMP inhibitor-responsive promoter module required for expression of the early neural gene zic1. Dev Biol 289(2):517–529.  https://doi.org/10.1016/j.ydbio.2005.10.004 PubMedCrossRefGoogle Scholar
  116. Twigg SR, Forecki J, Goos JA, Richardson IC, Hoogeboom AJ, van den Ouweland AM, Swagemakers SM, Lequin MH, Van Antwerp D, SJ MG, Westbury I, Miller KA, Wall SA, van der Spek PJ, Mathijssen IM, Pauws E, Merzdorf CS, Wilkie AO, Consortium W (2015) Gain-of-function mutations in ZIC1 are associated with coronal craniosynostosis and learning disability. Am J Hum Genet 97(3):378–388.  https://doi.org/10.1016/j.ajhg.2015.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Urade Y, Hayaishi O (2000) Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 1482(1–2):259–271PubMedCrossRefGoogle Scholar
  118. Van Stry M, Kazlauskas A, Schreiber SL, Symes K (2005) Distinct effectors of platelet-derived growth factor receptor-alpha signaling are required for cell survival during embryogenesis. Proc Natl Acad Sci U S A 102(23):8233–8238.  https://doi.org/10.1073/pnas.0502885102 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118(Pt 15):3225–3232.  https://doi.org/10.1242/jcs.02519 PubMedCrossRefGoogle Scholar
  120. Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA (2015) Xenopus Pkdcc1 and Pkdcc2 are two new tyrosine kinases involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PLoS One 10(8):e0135504.  https://doi.org/10.1371/journal.pone.0135504 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wallingford JB (2005) Neural tube closure and neural tube defects: studies in animal models reveal known knowns and known unknowns. Am J Med Genet C: Semin Med Genet 135C(1):59–68.  https://doi.org/10.1002/ajmg.c.30054 CrossRefGoogle Scholar
  122. Ware SM, Harutyunyan KG, Belmont JW (2006a) Zic3 is critical for early embryonic patterning during gastrulation. Dev Dyn 235(3):776–785.  https://doi.org/10.1002/dvdy.20668 PubMedCrossRefGoogle Scholar
  123. Ware SM, Harutyunyan KG, Belmont JW (2006b) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 235(6):1631–1637.  https://doi.org/10.1002/dvdy.20719 PubMedCrossRefGoogle Scholar
  124. Watabe Y, Baba Y, Nakauchi H, Mizota A, Watanabe S (2011) The role of Zic family zinc finger transcription factors in the proliferation and differentiation of retinal progenitor cells. Biochem Biophys Res Commun 415(1):42–47.  https://doi.org/10.1016/j.bbrc.2011.10.007 PubMedCrossRefGoogle Scholar
  125. Weber JR, Sokol SY (2003) Identification of a phylogenetically conserved activin-responsive enhancer in the Zic3 gene. Mech Dev 120(8):955–964PubMedCrossRefGoogle Scholar
  126. Winata CL, Kondrychyn I, Kumar V, Srinivasan KG, Orlov Y, Ravishankar A, Prabhakar S, Stanton LW, Korzh V, Mathavan S (2013) Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 9(10):e1003852.  https://doi.org/10.1371/journal.pgen.1003852 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wu J, Li C, Zhao S, Mao B (2010) Differential expression of the Brunol/CELF family genes during Xenopus laevis early development. Int J Dev Biol 54(1):209–214.  https://doi.org/10.1387/ijdb.082685jw PubMedCrossRefGoogle Scholar
  128. Yabe S, Tanegashima K, Haramoto Y, Takahashi S, Fujii T, Kozuma S, Taketani Y, Asashima M (2003) FRL-1, a member of the EGF-CFC family, is essential for neural differentiation in Xenopus early development. Development 130(10):2071–2081PubMedCrossRefGoogle Scholar
  129. Yamamoto TS, Takagi C, Ueno N (2000) Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mech Dev 91(1–2):131–141PubMedCrossRefGoogle Scholar
  130. Yan B, Neilson KM, Moody SA (2009) FoxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev Biol 329(1):80–95.  https://doi.org/10.1016/j.ydbio.2009.02.019 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yang Y, Hwang CK, Junn E, Lee G, Mouradian MM (2000) ZIC2 and Sp3 repress Sp1-induced activation of the human D1A dopamine receptor gene. J Biol Chem 275(49):38863–38869.  https://doi.org/10.1074/jbc.M007906200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Cell Biology and NeuroscienceMontana State UniversityBozemanUSA

Personalised recommendations