Skip to main content

Roles of ZIC2 in Regulation of Pluripotent Stem Cells

  • Chapter
  • First Online:
Zic family

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1046))

Abstract

Pioneered by the classical mouse embryonic stem cells (ESCs), various stem cell lines representing the peri- and postimplantation stages of embryogenesis have been established. To gain insight into the gene regulatory network operating in these cells, we first investigated epiblast stem cells (EpiSCs), performing ChIP-seq analysis for five major transcription factors (TFs) involved in epiblast regulation. The analysis indicated that SOX2-POU5F1 TF pairs highlighted in mouse ESCs are not the major players in other stem cells. The major acting transcription factors shift from SOX2/POU5F1 in mouse ESCs to ZIC2/OTX2 in EpiSCs, and this shift is primed in ESCs by binding of ZIC2 at relevant genomic positions that later function as enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aruga J (2004) The role of Zic genes in neural development. Mol Cell Neurosci 26:205–221

    Article  CAS  PubMed  Google Scholar 

  • Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K (1994) A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem 63:1880–1890

    Article  CAS  PubMed  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Brown S (2009) Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis. Gene Expr Patterns 9:43–49

    Article  CAS  PubMed  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL (2000) Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 141:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu H, Yuan P et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Elms P, Scurry A, Davies J, Willoughby C, Hacker T, Bogani D, Arkell R (2004) Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns 4:505–511

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Factor DC, Corradin O, Zentner GE, Saiakhova A, Song L, Chenoweth JG, McKay RD, Crawford GE, Scacheri PC, Tesar PJ (2014) Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Ota M, Mikoshiba K, Aruga J (2007) Zic2 and Zic3 synergistically control neurulation and segmentation of paraxial mesoderm in mouse embryo. Dev Biol 306:669–684

    Article  CAS  PubMed  Google Scholar 

  • Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar PJ, Aruga J, Matsuo I, Kondoh H (2012) Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development 139:3926–3937

    Article  CAS  PubMed  Google Scholar 

  • Lim LS, Loh YH, Zhang W, Li Y, Chen X, Wang Y, Bakre M, Ng HH, Stanton LW (2007) Zic3 is required for maintenance of pluripotency in embryonic stem cells. Mol Biol Cell 18:1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodato MA, Ng CW, Wamstad JA, Cheng AW, Thai KK, Fraenkel E, Jaenisch R, Boyer LA (2013) SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet 9:e1003288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Gao X, Lin C, Smith ER, Marshall SA, Swanson SK, Florens L, Washburn MP, Shilatifard A (2015) Zic2 is an enhancer-binding factor required for embryonic stem cell specification. Mol Cell 57:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda K, Mikami T, Oki S, Iida H, Andrabi M, Boss J, Yamaguchi K, Shigenobu S, Kondoh H (2017) ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development 144:1948–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A 97:1618–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy J, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a lobaoratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ong CT, Corces VG (2012) Enhancers: emerging roles in cell fate specification. EMBO Rep 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson EJ (1987) Teratocarcinomas and embryonic stem cells: a practical approach. IRL Press, Oxford

    Google Scholar 

  • Shen MM (2007) Nodal signaling: developmental roles and regulation. Development 134:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Sumi T, Oki S, Kitajima K, Meno C (2013) Epiblast ground state is controlled by canonical Wnt/beta-catenin signaling in the postimplantation mouse embryo and epiblast stem cells. PLoS One 8:e63378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, Brons G, Pedersen RA (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware SM, Harutyunyan KG, Belmont JW (2006) Zic3 is critical for early embryonic patterning during gastrulation. Dev Dyn 235:776–785

    Article  CAS  PubMed  Google Scholar 

  • Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM (2008) Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17:2986–2996

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Kalkan T, Morissroe C, Marks H, Stunnenberg H, Smith A, Sharrocks AD (2014) Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency. Cell Rep 7:1968–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaret KS, Mango SE (2016) Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev 37:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS Kakenhi Grant P26251024 and JP17H03680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisato Kondoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondoh, H. (2018). Roles of ZIC2 in Regulation of Pluripotent Stem Cells. In: Aruga, J. (eds) Zic family. Advances in Experimental Medicine and Biology, vol 1046. Springer, Singapore. https://doi.org/10.1007/978-981-10-7311-3_17

Download citation

Publish with us

Policies and ethics