Zic family pp 301-327 | Cite as

ZIC3 in Heterotaxy

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1046)


Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.


Left-right patterning Gastrulation Mutation Planar cell polarity Node Cilia 


  1. Ahmed JN et al (2013) A murine Zic3 transcript with a premature termination codon evades nonsense-mediated decay during axis formation. Dis Model Mech 6:755–767. PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allache R et al (2014) Novel mutations in Lrp6 orthologs in mouse and human neural tube defects affect a highly dosage-sensitive Wnt non-canonical planar cell polarity pathway. Hum Mol Genet 23:1687–1699. PubMedCrossRefGoogle Scholar
  3. Antic D, Stubbs JL, Suyama K, Kintner C, Scott MP, Axelrod JD (2010) Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One 5:e8999. PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aruga J et al (2006) A wide-range phylogenetic analysis of Zic proteins: implications for correlations between protein structure conservation and body plan complexity. Genomics 87:783–792. PubMedCrossRefGoogle Scholar
  5. Axelrod JD (2001) Unipolar membrane association of dishevelled mediates frizzled planar cell polarity signaling. Genes Dev 15:1182–1187. PubMedPubMedCentralGoogle Scholar
  6. Babu D, Roy S (2013) Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 3:130052. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Badis G et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science (New York, NY) 324:1720–1723. CrossRefGoogle Scholar
  8. Bamford RN et al (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26:365–369. PubMedCrossRefGoogle Scholar
  9. Bangs F, Anderson KV (2017) Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb Perspect Biol 9.
  10. Bastock R, Strutt H, Strutt D (2003) Strabismus is asymmetrically localised and binds to prickle and dishevelled during drosophila planar polarity patterning. Development (Cambridge, UK) 130:3007–3014CrossRefGoogle Scholar
  11. Bedard JE, Purnell JD, Ware SM (2007) Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3. Hum Mol Genet 16:187–198. PubMedCrossRefGoogle Scholar
  12. Bedard JE, Haaning AM, Ware SM (2011) Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease. PLoS One 6:e23755. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by desert hedgehog regulates the male germline. Curr Biol 6:298–304PubMedCrossRefGoogle Scholar
  14. Blank MC, Grinberg I, Aryee E, Laliberte C, Chizhikov VV, Henkelman RM, Millen KJ (2011) Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development (Cambridge, UK) 138:1207–1216. CrossRefGoogle Scholar
  15. Blum M, Feistel K, Thumberger T, Schweickert A (2014) The evolution and conservation of left-right patterning mechanisms. Development (Cambridge, UK) 141:1603–1613. CrossRefGoogle Scholar
  16. Bogani D et al (2004) New semidominant mutations that affect mouse development. Genesis (New York, NY: 2000) 40:109–117. CrossRefGoogle Scholar
  17. Caron A, Xu X, Lin X (2012) Wnt/beta-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer’s vesicle. Development (Cambridge, UK) 139:514–524. CrossRefGoogle Scholar
  18. Casey B, Devoto M, Jones KL, Ballabio A (1993) Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27.1. Nat Genet 5:403–407. PubMedCrossRefGoogle Scholar
  19. Cast AE, Gao C, Amack JD, Ware SM (2012) An essential and highly conserved role for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis. Dev Biol 364:22–31. PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chan DW, Liu VW, Leung LY, Yao KM, Chan KK, Cheung AN, Ngan HY (2011) Zic2 synergistically enhances hedgehog signalling through nuclear retention of Gli1 in cervical cancer cells. J Pathol 225:525–534. PubMedCrossRefGoogle Scholar
  21. Chen WS et al (2008) Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133:1093–1105. PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011) Sonic hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol 9:e1001083. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chhin B et al (2007) Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Hum Mutat 28:563–570. PubMedCrossRefGoogle Scholar
  24. Chung B, Shaffer LG, Keating S, Johnson J, Casey B, Chitayat D (2011) From VACTERL-H to heterotaxy: variable expressivity of ZIC3-related disorders. Am J Med Genet A 155a:1123–1128. PubMedCrossRefGoogle Scholar
  25. Correa-Villasenor A, McCarter R, Downing J, Ferencz C (1991) White-black differences in cardiovascular malformations in infancy and socioeconomic factors. The Baltimore-Washington Infant Study Group. Am J Epidemiol 134:393–402PubMedCrossRefGoogle Scholar
  26. Cowan J, Tariq M, Ware SM (2014) Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 35:66–75. PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cowan JR et al (2016) Copy number variation as a genetic basis for heterotaxy and heterotaxy-spectrum congenital heart defects philosophical transactions of the Royal Society of London series B. Biol Sci 371.
  28. D’Alessandro LC, Casey B, Siu VM (2013a) Situs inversus totalis and a novel ZIC3 mutation in a family with X-linked heterotaxy. Congenit Heart Dis 8:E36–E40. PubMedCrossRefGoogle Scholar
  29. D’Alessandro LC, Latney BC, Paluru PC, Goldmuntz E (2013b) The phenotypic spectrum of ZIC3 mutations includes isolated d-transposition of the great arteries and double outlet right ventricle. Am J Med Genet A 161a:792–802. PubMedCrossRefGoogle Scholar
  30. De Luca A et al (2010) Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart (British Cardiac Society) 96:673–677. CrossRefGoogle Scholar
  31. Dunaeva M, Michelson P, Kogerman P, Toftgard R (2003) Characterization of the physical interaction of Gli proteins with SUFU proteins. J Biol Chem 278:5116–5122. PubMedCrossRefGoogle Scholar
  32. El Malti R et al (2016) A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field. Eur J Hum Genet: EJHG 24:228–236. PubMedCrossRefGoogle Scholar
  33. Elms P, Scurry A, Davies J, Willoughby C, Hacker T, Bogani D, Arkell R (2004) Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns: GEP 4:505–511. PubMedCrossRefGoogle Scholar
  34. Fakhro KA et al (2011) Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A 108:2915–2920. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Feiguin F, Hannus M, Mlodzik M, Eaton S (2001) The ankyrin repeat protein Diego mediates frizzled-dependent planar polarization. Dev Cell 1:93–101PubMedCrossRefGoogle Scholar
  36. Ferrero GB et al (1997) A submicroscopic deletion in Xq26 associated with familial situs ambiguus. Am J Hum Genet 61:395–401. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Field S et al (2011) Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development (Cambridge, UK) 138:1131–1142. CrossRefGoogle Scholar
  38. Fritz B et al (2005) Situs ambiguus in a female fetus with balanced (X;21) translocation – evidence for functional nullisomy of the ZIC3 gene? Eur J Hum enet: EJHG 13:34–40. CrossRefGoogle Scholar
  39. Fujimi TJ, Hatayama M, Aruga J (2012) Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/beta-catenin signaling pathway. Dev Biol 361:220–231. PubMedCrossRefGoogle Scholar
  40. Gao B et al (2011) Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 20:163–176. PubMedPubMedCentralCrossRefGoogle Scholar
  41. Garnett AT, Square TA, Medeiros DM (2012) BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development (Cambridge, UK) 139:4220–4231. CrossRefGoogle Scholar
  42. Gebbia M et al (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17:305–308. PubMedCrossRefGoogle Scholar
  43. Haaning AM, Quinn ME, Ware SM (2013) Heterotaxy-spectrum heart defects in Zic3 hypomorphic mice. Pediatr Res 74:494–502. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hamada H, Tam PP (2014) Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000prime Rep 6:110. 10.12703/p6-110 PubMedPubMedCentralGoogle Scholar
  45. Hashimoto M et al (2010) Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 12:170–176. PubMedCrossRefGoogle Scholar
  46. Hatayama M et al (2008) Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 17:3459–3473. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hierholzer A, Kemler R (2010) Beta-catenin-mediated signaling and cell adhesion in postgastrulation mouse embryos. Dev Dyn: Off Publ Am Assoc Anatomists 239:191–199. Google Scholar
  48. Houtmeyers R et al (2016) Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 25:3946–3959. PubMedCrossRefGoogle Scholar
  49. Huangfu D, Anderson KV (2005) Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 102:11325–11330. PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87. PubMedCrossRefGoogle Scholar
  51. Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R (2010) The output of hedgehog signaling is controlled by the dynamic association between suppressor of fused and the Gli proteins. Genes Dev 24:670–682. PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jenny A, Reynolds-Kenneally J, Das G, Burnett M, Mlodzik M (2005) Diego and Prickle regulate frizzled planar cell polarity signalling by competing for dishevelled binding. Nat Cell Biol 7:691–697. PubMedCrossRefGoogle Scholar
  53. Jiang Z, Zhu L, Hu L, Slesnick TC, Pautler RG, Justice MJ, Belmont JW (2013) Zic3 is required in the extra-cardiac perinodal region of the lateral plate mesoderm for left-right patterning and heart development. Hum Mol Genet 22:879–889. PubMedCrossRefGoogle Scholar
  54. Keller MJ, Chitnis AB (2007) Insights into the evolutionary history of the vertebrate zic3 locus from a teleost-specific zic6 gene in the zebrafish, Danio rerio. Dev Genes Evol 217:541–547. PubMedCrossRefGoogle Scholar
  55. Kennedy MP et al (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115:2814–2821. PubMedCrossRefGoogle Scholar
  56. Kim SJ, Kim WH, Lim HG, Lee JY (2008) Outcome of 200 patients after an extracardiac Fontan procedure. J Thorac Cardiovasc Surg 136:108–116. PubMedCrossRefGoogle Scholar
  57. Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K (2000) Zic3 is involved in the left-right specification of the Xenopus embryo. Development (Cambridge, UK) 127:4787–4795Google Scholar
  58. Kitajima K, Oki S, Ohkawa Y, Sumi T, Meno C (2013) Wnt signaling regulates left-right axis formation in the node of mouse embryos. Dev Biol 380:222–232. PubMedCrossRefGoogle Scholar
  59. Klootwijk R et al (2004) Genetic variants in ZIC1, ZIC2, and ZIC3 are not major risk factors for neural tube defects in humans. Am J Med Genet A 124a:40–47. PubMedCrossRefGoogle Scholar
  60. Kogerman P et al (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1:312–319. PubMedCrossRefGoogle Scholar
  61. Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K (2001) Physical and functional interactions between Zic and Gli proteins. J Biol Chem 276:6889–6892. PubMedCrossRefGoogle Scholar
  62. Lee JD, Anderson KV (2008) Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn: Off Publ Am Assoc Anatomists 237:3464–3476. CrossRefGoogle Scholar
  63. Lim LS, Hong FH, Kunarso G, Stanton LW (2010) The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells (Dayton, Ohio) 28:1961–1969. CrossRefGoogle Scholar
  64. Lin X, Xu X (2009) Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development (Cambridge, UK) 136:207–217. CrossRefGoogle Scholar
  65. Lin AE et al (2014) Laterality defects in the national birth defects prevention study (1998-2007): birth prevalence and descriptive epidemiology. Am J Med Genet A 164a:2581–2591. PubMedCrossRefGoogle Scholar
  66. Liu C, Lin C, Gao C, May-Simera H, Swaroop A, Li T (2014) Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open 3:861–870. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ma L, Selamet Tierney ES, Lee T, Lanzano P, Chung WK (2012) Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young 22:194–201. PubMedCrossRefGoogle Scholar
  68. Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA (2004) The activity of the nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev 18:2342–2347. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Maurus D, Harris WA (2009) Zic-associated holoprosencephaly: zebrafish Zic1 controls midline formation and forebrain patterning by regulating nodal, hedgehog, and retinoic acid signaling. Genes Dev 23:1461–1473. PubMedPubMedCentralCrossRefGoogle Scholar
  70. May SR et al (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287:378–389. PubMedCrossRefGoogle Scholar
  71. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73PubMedCrossRefGoogle Scholar
  72. Megarbane A et al (2000) X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet: EJHG 8:704–708. PubMedCrossRefGoogle Scholar
  73. Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science (New York, NY) 285:403–406CrossRefGoogle Scholar
  74. Migeotte I, Grego-Bessa J, Anderson KV (2011) Rac1 mediates morphogenetic responses to intercellular signals in the gastrulating mouse embryo. Development (Cambridge, UK) 138:3011–3020. CrossRefGoogle Scholar
  75. Milenkovic L, Scott MP, Rohatgi R (2009) Lateral transport of smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187:365–374. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Minegishi K et al (2017) A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Dev Cell 40:439–452.e434. PubMedCrossRefGoogle Scholar
  77. Mizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J (2004) Myogenic repressor I-mfa interferes with the function of Zic family proteins. Biochem Biophys Res Commun 320:233–240. PubMedCrossRefGoogle Scholar
  78. Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313. PubMedCrossRefGoogle Scholar
  79. Nakamura T et al (2012) Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat Commun 3:1322. PubMedCrossRefGoogle Scholar
  80. Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP (2005) Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development (Cambridge, UK) 132:5425–5436. CrossRefGoogle Scholar
  81. Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99. PubMedCrossRefGoogle Scholar
  82. Nyholm MK, Wu SF, Dorsky RI, Grinblat Y (2007) The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development (Cambridge, UK) 134:735–746. CrossRefGoogle Scholar
  83. Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte JC, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–644. PubMedCrossRefGoogle Scholar
  84. Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M (2009) Recurrence of congenital heart defects in families. Circulation 120:295–301. PubMedCrossRefGoogle Scholar
  85. Pan H, Gustafsson MK, Aruga J, Tiedken JJ, Chen JC, Emerson CP Jr (2011) A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis. Dev Biol 351:120–127. PubMedPubMedCentralCrossRefGoogle Scholar
  86. Parmantier E et al (1999) Schwann cell-derived desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23:713–724PubMedCrossRefGoogle Scholar
  87. Paulussen AD et al (2016) Rare novel variants in the ZIC3 gene cause X-linked heterotaxy. Eur J Hum Genet: EJHG 24:1783–1791. PubMedPubMedCentralCrossRefGoogle Scholar
  88. Popperl H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RS (1997) Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development (Cambridge, UK) 124:2997–3005Google Scholar
  89. Pourebrahim R et al (2011) Transcription factor Zic2 inhibits Wnt/beta-catenin protein signaling. J Biol Chem 286:37732–37740. PubMedPubMedCentralCrossRefGoogle Scholar
  90. Purandare SM et al (2002) A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development (Cambridge, UK) 129:2293–2302Google Scholar
  91. Quinn ME, Haaning A, Ware SM (2012) Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice. Hum Mol Genet 21:1888–1896. PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development (Cambridge, UK) 127:2763–2772Google Scholar
  93. Rigler SL et al (2015) Novel copy-number variants in a population-based investigation of classic heterotaxy genetics in medicine: official journal of the American College of Medical. Genetics 17:348–357. Google Scholar
  94. Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science (New York, NY) 317:372–376. CrossRefGoogle Scholar
  95. Shapiro AJ et al (2014) Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 146:1176–1186. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shimada Y, Usui T, Yanagawa S, Takeichi M, Uemura T (2001) Asymmetric colocalization of flamingo, a seven-pass transmembrane cadherin, and dishevelled in planar cell polarization. Curr Biol 11:859–863PubMedCrossRefGoogle Scholar
  97. Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y (2010) Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466:378–382. PubMedPubMedCentralCrossRefGoogle Scholar
  98. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086PubMedPubMedCentralCrossRefGoogle Scholar
  99. Strutt DI (2001) Asymmetric localization of frizzled and the establishment of cell polarity in the drosophila wing. Mol Cell 7:367–375PubMedCrossRefGoogle Scholar
  100. Sutherland MJ, Ware SM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C: Semin Med Genet 151c:307–317. CrossRefGoogle Scholar
  101. Sutherland MJ, Wang S, Quinn ME, Haaning A, Ware SM (2013) Zic3 is required in the migrating primitive streak for node morphogenesis and left-right patterning. Hum Mol Genet 22:1913–1923. PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–177. PubMedCrossRefGoogle Scholar
  103. Tree DR, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD (2002) Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–381PubMedCrossRefGoogle Scholar
  104. Tsiairis CD, McMahon AP (2009) An Hh-dependent pathway in lateral plate mesoderm enables the generation of left/right asymmetry. Curr Biol 19:1912–1917. PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tsukui T et al (1999) Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 96:11376–11381PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tukachinsky H, Lopez LV, Salic A (2010) A mechanism for vertebrate hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol 191:415–428. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tzschach A et al (2006) Heterotaxy and cardiac defect in a girl with chromosome translocation t(X;1)(q26;p13.1) and involvement of ZIC3. Eur J Hum Genet: EJHG 14:1317–1320. PubMedCrossRefGoogle Scholar
  108. Vierkotten J, Dildrop R, Peters T, Wang B, Ruther U (2007) Ftm is a novel basal body protein of cilia involved in Shh signalling. Development (Cambridge, UK) 134:2569–2577. CrossRefGoogle Scholar
  109. Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434PubMedCrossRefGoogle Scholar
  110. Ware SM et al (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74:93–105. PubMedCrossRefGoogle Scholar
  111. Ware SM, Harutyunyan KG, Belmont JW (2006a) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn: Off Publ Am Assoc Anatomists 235:1631–1637. CrossRefGoogle Scholar
  112. Ware SM, Harutyunyan KG, Belmont JW (2006b) Zic3 is critical for early embryonic patterning during gastrulation. Dev Dyn: Off Publ Am Assoc Anatomists 235:776–785. CrossRefGoogle Scholar
  113. Weatherbee SD, Niswander LA, Anderson KV (2009) A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and hedgehog signaling. Hum Mol Genet 18:4565–4575. PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wessels MW et al (2010) Polyalanine expansion in the ZIC3 gene leading to X-linked heterotaxy with VACTERL association: a new polyalanine disorder? J Med Genet 47:351–355. PubMedCrossRefGoogle Scholar
  115. Winata CL et al (2013) Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 9:e1003852. PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yoshiba S et al (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science (New York, NY) 338:226–231. CrossRefGoogle Scholar
  117. Zeng L et al (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192PubMedCrossRefGoogle Scholar
  118. Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:781–792PubMedCrossRefGoogle Scholar
  119. Zhang M, Zhang J, Lin SC, Meng A (2012) Beta-catenin 1 and beta-catenin 2 play similar and distinct roles in left-right asymmetric development of zebrafish embryos. Development (Cambridge, UK) 139:2009–2019. CrossRefGoogle Scholar
  120. Zhu L, Harutyunyan KG, Peng JL, Wang J, Schwartz RJ, Belmont JW (2007a) Identification of a novel role of ZIC3 in regulating cardiac development. Hum Mol Genet 16:1649–1660. PubMedCrossRefGoogle Scholar
  121. Zhu L, Peng JL, Harutyunyan KG, Garcia MD, Justice MJ, Belmont JW (2007b) Craniofacial, skeletal, and cardiac defects associated with altered embryonic murine Zic3 expression following targeted insertion of a PGK-NEO cassette. Front Biosci 12:1680–1690PubMedCrossRefGoogle Scholar
  122. Zhu L, Zhou G, Poole S, Belmont JW (2008) Characterization of the interactions of human ZIC3 mutants with GLI3. Hum Mutat 29:99–105. PubMedCrossRefGoogle Scholar
  123. Zhu P, Xu X, Lin X (2015) Both ciliary and non-ciliary functions of Foxj1a confer Wnt/beta-catenin signaling in zebrafish left-right patterning. Biol Open 4:1376–1386. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PediatricsIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA

Personalised recommendations