Zic family pp 269-299 | Cite as

ZIC2 in Holoprosencephaly

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1046)

Abstract

The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.

Keywords

Zic2 Holoprosencephaly Syntelencephaly Prechordal plate Telencephalon Dorsal-ventral pattern Nodal Hedgehog Wnt BMP 

References

  1. Abe Y, Oka A, Mizuguchi M et al (2009) EYA4, deleted in a case with middle interhemispheric variant of holoprosencephaly, interacts with SIX3 both physically and functionally. Hum Mutat 30:946–955.  https://doi.org/10.1002/humu.21094 CrossRefGoogle Scholar
  2. Alvarez-Medina R, Cayuso J, Okubo T et al (2007) Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135:237–247.  https://doi.org/10.1242/dev.012054 PubMedCrossRefGoogle Scholar
  3. Anderson RM, Lawrence AR, Stottmann RW et al (2002) Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129:4975–4987PubMedGoogle Scholar
  4. Andersson O, Reissmann E, Jörnvall H, Ibáñez CF (2006) Synergistic interaction between Gdf1 and Nodal during anterior axis development. Dev Biol 293:370–381.  https://doi.org/10.1016/j.ydbio.2006.02.002 PubMedCrossRefGoogle Scholar
  5. Ang SL, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574PubMedCrossRefGoogle Scholar
  6. Ang SL, Wierda A, Wong D et al (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315PubMedGoogle Scholar
  7. Aoto K, Shikata Y, Higashiyama D, Shiota K, Motoyama J (2008) Fetal ethanol exposure activates protein kinase a and impairsShh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth defects research part A: clinical and molecular. Teratology 82(4):224–231Google Scholar
  8. Aoto K, Shikata Y, Imai H et al (2009) Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327:106–120.  https://doi.org/10.1016/j.ydbio.2008.11.022 PubMedCrossRefGoogle Scholar
  9. Arauz RF, Solomon BD, Pineda-Alvarez DE et al (2010) A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to gonadotropin-releasing hormone deficiency in humans. Mol Syndromol 1:59–66.  https://doi.org/10.1159/000302285 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arkell R, Beddington RS (1997) BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124(1):1–12PubMedGoogle Scholar
  11. Arkell RM, Tam PPL (2012) Initiating head development in mouse embryos: integrating signalling and transcriptional activity. Open Biol 2:120030–120030.  https://doi.org/10.1098/rsob.120030 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Arkell RM, Fossat N, Tam PPL (2013) Wnt signalling in mouse gastrulation and anterior development: new players in the pathway and signal output. Curr Opin Genet Dev 23:454–460.  https://doi.org/10.1016/j.gde.2013.03.001 PubMedCrossRefGoogle Scholar
  13. Bae G-U, Domené S, Roessler E et al (2011) Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet 89:231–240.  https://doi.org/10.1016/j.ajhg.2011.07.001 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barkovich AJ, Quint DJ (1993) Middle interhemispheric fusion: an unusual variant of holoprosencephaly. Am J Neuroradiol 14:431–440PubMedGoogle Scholar
  15. Barr M, Cohen MM (2002) Autosomal recessive alobar holoprosencephaly with essentially normal faces. Am J Med Genet 112:28–30.  https://doi.org/10.1002/ajmg.10587 PubMedCrossRefGoogle Scholar
  16. Barratt KS, Glanville-Jones HC, Arkell RM (2014) The Zic2 gene directs the formation and function of node cilia to control cardiac situs. Genesis 52:626–635.  https://doi.org/10.1002/dvg.22767 PubMedCrossRefGoogle Scholar
  17. Belloni E, Muenke M, Roessler E, Traverse G, Siegel-Bartelt J, Frumkin A, Mitchell HF, Donis-Keller H, Helms C, Hing AV, Heng HHQ, Koop B, Martindale D, Rommens JM, Tsui L-C, Scherer SW (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14(3):353–356Google Scholar
  18. Brown S, Warburton D, Brown LY et al (1998) Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 20:180–183.  https://doi.org/10.1038/2484 PubMedCrossRefGoogle Scholar
  19. Brown LY, Odent S, David V et al (2001) Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 10:791–796PubMedCrossRefGoogle Scholar
  20. Brown LY, Paraso M, Arkell RM, Brown S (2005) In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet 14:411–420.  https://doi.org/10.1093/hmg/ddi037 PubMedCrossRefGoogle Scholar
  21. Camus A, Davidson BP, Billiards S et al (2000) The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo. Development 127:1799–1813PubMedGoogle Scholar
  22. Cheng X, Hsu C, Currle DS et al (2006) Central roles of the roof plate in telencephalic development and holoprosencephaly. J Neurosci 26:7640–7649.  https://doi.org/10.1523/JNEUROSCI.0714-06.2006 PubMedCrossRefGoogle Scholar
  23. Chiang C, Litingtung Y, Lee E et al (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383:407–413PubMedCrossRefGoogle Scholar
  24. Choe Y, Zarbalis KS, Pleasure SJ et al (2014) Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 9:e86025.  https://doi.org/10.1371/journal.pone.0086025 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chu GC, Dunn NR, Anderson DC et al (2004) Differential requirements for Smad4 in TGFbeta-dependent patterning of the early mouse embryo. Development 131:3501–3512.  https://doi.org/10.1242/dev.01248 PubMedCrossRefGoogle Scholar
  26. Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451PubMedGoogle Scholar
  27. Currle DS, Cheng X, Hsu C-M, Monuki ES (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132:3549–3559.  https://doi.org/10.1242/dev.01915 PubMedCrossRefGoogle Scholar
  28. Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247.  https://doi.org/10.1016/j.cytogfr.2005.01.007 PubMedCrossRefGoogle Scholar
  29. Dale JK, Vesque C, Lints TJ et al (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90:257–269PubMedCrossRefGoogle Scholar
  30. de la Cruz JM, Bamford RN, Burdine RD et al (2002) A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects. Hum Genet 110:422–428.  https://doi.org/10.1007/s00439-002-0709-3 PubMedCrossRefGoogle Scholar
  31. DeMyer W, Zeman W, Palmer CG (1964) The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–263PubMedGoogle Scholar
  32. Dou CL, Li S, Lai E (1999) Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb Cortex 9:543–550PubMedCrossRefGoogle Scholar
  33. Dou C, Lee J, Liu B et al (2000) BF-1 interferes with transforming growth factor beta signaling by associating with Smad partners. Mol Cell Biol 20:6201–6211PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dubourg C, Bendavid C, Pasquier L et al (2007) Holoprosencephaly. Orphanet J Rare Dis 2:8.  https://doi.org/10.1186/1750-1172-2-8 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dubourg C, David V, Gropman A et al (2011) Clinical utility gene card for: holoprosencephaly. Eur J Hum Genet 19:preceeding 118–120.  https://doi.org/10.1038/ejhg.2010.110
  36. Dubourg C, Carré W, Hamdi-Rozé H et al (2016) Mutational spectrum in holoprosencephaly shows that FGF is a new major signaling pathway. Hum Mutat 37:1329–1339PubMedCrossRefGoogle Scholar
  37. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807.  https://doi.org/10.1101/GAD.9.22.2795 PubMedCrossRefGoogle Scholar
  38. Dufort D, Schwartz L, Harpal K, Rossant J (1998) The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125:3015–3025. doi: 7588062PubMedGoogle Scholar
  39. Dunn N, Vincent S, Oxburgh L et al (2004) Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development 131:1717–1728.  https://doi.org/10.1242/dev.01072 PubMedCrossRefGoogle Scholar
  40. Dupé V, Rochard L, Mercier S et al (2011) NOTCH, a new signaling pathway implicated in holoprosencephaly. Hum Mol Genet 20:1122–1131.  https://doi.org/10.1093/hmg/ddq556 PubMedCrossRefGoogle Scholar
  41. Echelard Y, Epstein DJ, St-Jacques B et al (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430PubMedCrossRefGoogle Scholar
  42. Elms P, Siggers P, Napper D et al (2003) Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264:391–406.  https://doi.org/10.1016/j.ydbio.2003.09.005 PubMedCrossRefGoogle Scholar
  43. Elms P, Scurry A, Davies J et al (2004) Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns 4:505–511.  https://doi.org/10.1016/j.modgep.2004.03.003 PubMedCrossRefGoogle Scholar
  44. Episkopou V, Arkell R, Timmons PM et al (2001) Induction of the mammalian node requires Arkadia function in the extraembryonic lineages. Nature 410:825–830.  https://doi.org/10.1038/35071095 PubMedCrossRefGoogle Scholar
  45. Fernandes M, Gutin G, Alcorn H et al (2007) Mutations in the BMP pathway in mice support the existence of two molecular classes of holoprosencephaly. Development 134:3789–3794.  https://doi.org/10.1242/dev.004325 PubMedCrossRefGoogle Scholar
  46. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893.  https://doi.org/10.1038/nrm2278 PubMedCrossRefGoogle Scholar
  47. Fuccillo M, Rallu M, McMahon AP, Fishell G (2004) Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131(20):5031–5040PubMedCrossRefGoogle Scholar
  48. Fujimi TJ, Hatayama M, Aruga J (2012) Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway. Dev Biol 361:220–231.  https://doi.org/10.1016/j.ydbio.2011.10.026 PubMedCrossRefGoogle Scholar
  49. Furushima K, Murata T, Matsuo I, Aizawa S (2000) A new murine zinc finger gene, Opr. Mech Dev 98:161–164.  https://doi.org/10.1016/S0925-4773(00)00456-1 PubMedCrossRefGoogle Scholar
  50. Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212PubMedGoogle Scholar
  51. Goulding MD, Chalepakis G, Deutsch U et al (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147PubMedPubMedCentralGoogle Scholar
  52. Gripp KW, Wotton D, Edwards MC et al (2000) Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 25:205–208.  https://doi.org/10.1038/76074 PubMedCrossRefGoogle Scholar
  53. Groves AK, LaBonne C (2014) Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 389:2–12.  https://doi.org/10.1016/j.ydbio.2013.11.027 PubMedCrossRefGoogle Scholar
  54. Gupta S, Sen J (2016) Roof plate mediated morphogenesis of the forebrain: new players join the game. Dev Biol 413:145–152.  https://doi.org/10.1016/j.ydbio.2016.03.019 PubMedCrossRefGoogle Scholar
  55. Gutin G, Fernandes M, Palazzolo L et al (2006) FGF signalling generates ventral telencephalic cells independently of SHH. Development 133:2937–2946.  https://doi.org/10.1242/dev.02465 PubMedCrossRefGoogle Scholar
  56. Hallonet M, Kaestner KH, Martin-Parras L et al (2002) Maintenance of the specification of the anterior definitive endoderm and forebrain depends on the axial mesendoderm: a study using HNF3β/Foxa2 conditional mutants. Dev Biol 243:20–33.  https://doi.org/10.1006/dbio.2001.0536 PubMedCrossRefGoogle Scholar
  57. Hanashima C, Li SC, Shen L et al (2004) Foxg1 suppresses early cortical cell fate. Science 303:56–59.  https://doi.org/10.1126/science.1090674 PubMedCrossRefGoogle Scholar
  58. Hayhurst M, Gore BB, Tessier-Lavigne M, McConnell SK (2008) Ongoing sonic hedgehog signaling is required for dorsal midline formation in the developing forebrain. Dev Neurobiol 68:83–100.  https://doi.org/10.1002/dneu.20576 PubMedCrossRefGoogle Scholar
  59. Hébert JM, Mishina Y, McConnell SK (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron.  https://doi.org/10.1016/S0896-6273(02)00900-5
  60. Hébert JM, Fishell G (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9(9):678–685Google Scholar
  61. Hébert JM, Hayhurst M, Marks ME et al (2003) BMP ligands act redundantly to pattern the dorsal telencephalic midline. Genesis 35:214–219.  https://doi.org/10.1002/gene.10183 PubMedCrossRefGoogle Scholar
  62. Hoch RV, Rubenstein JLR, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 20:378–386PubMedCrossRefGoogle Scholar
  63. Hong M, Krauss RS, Hannenhalli S et al (2012) Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet 8:e1002999.  https://doi.org/10.1371/journal.pgen.1002999 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoodless PA, Pye M, Chazaud C et al (2001) FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev 15:1257–1271.  https://doi.org/10.1101/gad.881501 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Houtmeyers R, Souopgui J, Tejpar S, Arkell RM (2013) The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 70:3791–3811.  https://doi.org/10.1007/s00018-013-1285-5 PubMedCrossRefGoogle Scholar
  66. Houtmeyers R, Tchouate Gainkam O, Glanville-Jones HC et al (2016) Zic2 mutation causes Holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 61:ddw235.  https://doi.org/10.1093/hmg/ddw235 Google Scholar
  67. Ip CK, Fossat N, Jones V et al (2014) Head formation: OTX2 regulates Dkk1 and Lhx1 activity in the anterior mesendoderm. Development 141:3859–3867.  https://doi.org/10.1242/dev.114900 PubMedCrossRefGoogle Scholar
  68. Jeong Y, Epstein DJ (2003) Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development 130:3891–3902.  https://doi.org/10.1242/dev.00590 PubMedCrossRefGoogle Scholar
  69. Kietzman HW, Everson JL, Sulik KK, Lipinski RJ (2014) The teratogenic effects of prenatal ethanol exposure are exacerbated by sonic hedgehog or Gli2 haploinsufficiency in the mouse. PLoS One 9:e89448.  https://doi.org/10.1371/journal.pone.0089448 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kinder SJ, Tsang TE, Wakamiya M et al (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634PubMedGoogle Scholar
  71. Kingsley DM, Bland AE, Grubber JM et al (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71:399–410PubMedCrossRefGoogle Scholar
  72. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10:634–642PubMedPubMedCentralCrossRefGoogle Scholar
  73. Koyabu Y, Nakata K, Mizugishi K et al (2001) Physical and functional interactions between Zic and Gli proteins. J Biol Chem 276:6889–6892.  https://doi.org/10.1074/jbc.C000773200 PubMedCrossRefGoogle Scholar
  74. Lacbawan F, Solomon BD, Roessler E et al (2009) Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 46:389–398.  https://doi.org/10.1136/jmg.2008.063818 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Le Dréau G, Martí E (2012) Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev Neurobiol 72:1471–1481.  https://doi.org/10.1002/dneu.22015 PubMedCrossRefGoogle Scholar
  76. Lewis AJ, Simon EM, Barkovich AJ et al (2002) Middle interhemispheric variant of holoprosencephaly: a distinct cliniconeuroradiologic subtype. Neurology 59:1860–1865PubMedCrossRefGoogle Scholar
  77. Li X-J, Zhang X, Johnson MA et al (2009) Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136:4055–4063.  https://doi.org/10.1242/dev.036624 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liem KF, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979PubMedCrossRefGoogle Scholar
  79. Liu Y, Festing M, Thompson JC et al (2004) Smad2 and Smad3 coordinately regulate craniofacial and endodermal development. Dev Biol 270:411–426.  https://doi.org/10.1016/j.ydbio.2004.03.017 PubMedCrossRefGoogle Scholar
  80. Luo G, Hofmann C, Bronckers AL et al (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820PubMedCrossRefGoogle Scholar
  81. Marcorelles P, Laquerriere A (2010) Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet 154C:109–119.  https://doi.org/10.1002/ajmg.c.30249 PubMedCrossRefGoogle Scholar
  82. Matsunaga E, Shiota K (1977) Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 16:261–272.  https://doi.org/10.1002/tera.1420160304 PubMedCrossRefGoogle Scholar
  83. Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129:2087–2098PubMedGoogle Scholar
  84. Mercier S, Dubourg C, Garcelon N et al (2011) New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases. J Med Genet 48:752–760.  https://doi.org/10.1136/jmedgenet-2011-100339 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ming JE, Kaupas ME, Roessler E et al (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301.  https://doi.org/10.1007/s00439-002-0695-5 PubMedCrossRefGoogle Scholar
  86. Mizugishi K, Aruga J, Nakata K, Mikoshiba K (2001) Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 276:2180–2188.  https://doi.org/10.1074/jbc.M004430200 PubMedCrossRefGoogle Scholar
  87. Monaghan AP, Kaestner KH, Grau E, Schütz G (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578PubMedGoogle Scholar
  88. Mouden C, Dubourg C, Carré W et al (2016) Complex mode of inheritance in holoprosencephaly revealed by whole exome sequencing. Clin Genet.  https://doi.org/10.1111/cge.12722
  89. Nagai T, Aruga J, Takada S et al (1997) The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182:299–313.  https://doi.org/10.1006/dbio.1996.8449 PubMedCrossRefGoogle Scholar
  90. Nagai T, Aruga J, Minowa O et al (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A 97:1618–1623.  https://doi.org/10.1073/pnas.97.4.1618 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nakayama J, Kinugasa H, Ohto T et al (2016) Monozygotic twins with de novo ZIC2 gene mutations discordant for the type of holoprosencephaly. Neurology 86:1456–1458.  https://doi.org/10.1212/WNL.0000000000002567 CrossRefGoogle Scholar
  92. Nanni L, Ming JE, Bocian M et al (1999) The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479–2488.  https://doi.org/10.1093/hmg/8.13.2479 PubMedCrossRefGoogle Scholar
  93. Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468PubMedGoogle Scholar
  94. Odent S, Le Marec B, Munnich A et al (1998) Segregation analysis in nonsyndromic holoprosencephaly. Am J Med Genet 77:139–143PubMedCrossRefGoogle Scholar
  95. Ohkubo Y, Chiang C, Rubenstein JLR (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111:1–17PubMedCrossRefGoogle Scholar
  96. Okada T, Okumura Y, Motoyama J, Ogawa M (2008) FGF8 signaling patterns the telencephalic midline by regulating putative key factors of midline development. Dev Biol 320:92–101.  https://doi.org/10.1016/j.ydbio.2008.04.034 PubMedCrossRefGoogle Scholar
  97. Orioli IM, Castilla EE (2010) Epidemiology of holoprosencephaly: prevalence and risk factors. Am J Med Genet C Semin Med Genet 154:13–21CrossRefGoogle Scholar
  98. Panchision DM, Pickel JM, Studer L et al (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15:2094–2110.  https://doi.org/10.1101/gad.894701 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Parr BA, Shea MJ, Vassileva G, McMahon AP (1993) Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119:247–261PubMedGoogle Scholar
  100. Paulussen ADC, Schrander-Stumpel CT, Tserpelis DCJ et al (2010) The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet 18:999–1005.  https://doi.org/10.1038/ejhg.2010.70 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707PubMedCrossRefGoogle Scholar
  102. Petryk A, Graf D, Marcucio R (2015) Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol 4:17–32PubMedCrossRefGoogle Scholar
  103. Pineda-Alvarez DE, Roessler E, Hu P et al (2012) Missense substitutions in the GAS1 protein present in holoprosencephaly patients reduce the affinity for its ligand, SHH. Hum Genet 131:301–310.  https://doi.org/10.1007/s00439-011-1078-6 PubMedCrossRefGoogle Scholar
  104. Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6:230–240.  https://doi.org/10.1038/nrn1628 PubMedCrossRefGoogle Scholar
  105. Pourebrahim R, Houtmeyers R, Ghogomu S et al (2011) Transcription factor Zic2 inhibits Wnt/Beta-catenin protein signaling. J Biol Chem 286:37732–37740.  https://doi.org/10.1074/jbc.M111.242826 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ribeiro LA, Quiezi RG, Nascimento A et al (2010) Holoprosencephaly and holoprosencephaly-like phenotype and GAS1 DNA sequence changes: report of four Brazilian patients. Am J Med Genet A 152A:1688–1694.  https://doi.org/10.1002/ajmg.a.33466 PubMedCrossRefGoogle Scholar
  107. Ribeiro LA, Roessler E, Hu P et al (2012) Comparison of mutation findings in ZIC2 between microform and classical holoprosencephaly in a Brazilian cohort. Birth Defects Res A Clin Mol Teratol 94:912–917.  https://doi.org/10.1002/bdra.23047 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Roessler E, Muenke M (2001) Midline and laterality defects: left and right meet in the middle. BioEssays 23:888–900.  https://doi.org/10.1002/bies.1130 PubMedCrossRefGoogle Scholar
  109. Roessler E, Muenke M (2010) The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet 154:52–61CrossRefGoogle Scholar
  110. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui L-C, Muenke M (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14(3):357–360Google Scholar
  111. Roessler E, Lacbawan F, Dubourg C et al (2009a) The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat.  https://doi.org/10.1002/humu.20982.The
  112. Roessler E, Ma Y, Ouspenskaia MV et al (2009b) Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans. Hum Genet 125:393–400.  https://doi.org/10.1007/s00439-009-0628-7 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Roessler E, Pei W, Ouspenskaia MV et al (2009c) Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab 98:225–234.  https://doi.org/10.1016/j.ymgme.2009.05.005 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Roessler E, Hu P, Hong SK et al (2012a) Unique alterations of an ultraconserved non-coding element in the 3′UTR of ZIC2 in holoprosencephaly. PLoS One 7:3–8.  https://doi.org/10.1371/journal.pone.0039026 CrossRefGoogle Scholar
  115. Roessler E, Vélez JI, Zhou N, Muenke M (2012b) Utilizing prospective sequence analysis of SHH, ZIC2, SIX3 and TGIF in holoprosencephaly probands to describe the parameters limiting the observed frequency of mutant gene x gene interactions. Mol Genet Metab 105:658–664.  https://doi.org/10.1016/j.ymgme.2012.01.005 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ruiz i Altaba A, Prezioso VR, Darnell JE, Jessell TM (1993) Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech Dev 44:91–108PubMedCrossRefGoogle Scholar
  117. Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59PubMedGoogle Scholar
  118. Schachter K A, Krauss RS (2008) Murine models of holoprosencephaly, 1st edn. ElsevierGoogle Scholar
  119. Serbedzija GN, Fraser SE, Bronner-Fraser M (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108:605–612PubMedGoogle Scholar
  120. Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718PubMedGoogle Scholar
  121. Simon EM, Hevner RF, Pinter JD et al (2002) The middle interhemispheric variant of holoprosencephaly. Am J Neuroradiol 23:151–155PubMedGoogle Scholar
  122. Solloway MJ, Dudley AT, Bikoff EK et al (1998) Mice lacking Bmp6 function. Dev Genet 22:321–339.  https://doi.org/10.1002/(SICI)1520-6408(1998)22:4<321::AID-DVG3>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  123. Solomon BD, Gropman A, Muenke M (1993) Holoprosencephaly overview. University of Washington, SeattleGoogle Scholar
  124. Solomon BD, Lacbawan F, Mercier S et al (2010a) Mutations in ZIC2 in human holoprosencephaly: description of a novel ZIC2 specific phenotype and comprehensive analysis of 157 individuals. J Med Genet 47:513–524.  https://doi.org/10.1136/jmg.2009.073049 PubMedCrossRefGoogle Scholar
  125. Solomon BD, Mercier S, Vélez JI et al (2010b) Analysis of genotype-phenotype correlations in human holoprosencephaly. Am J Med Genet C Semin Med Genet 154:133–141CrossRefGoogle Scholar
  126. Spoelgen R, Hammes A, Anzenberger U et al (2005) LRP2/megalin is required for patterning of the ventral telencephalon. Development 132:405–414.  https://doi.org/10.1242/dev.01580 PubMedCrossRefGoogle Scholar
  127. Storm EE, Garel S, Borello U et al (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133:1831–1844.  https://doi.org/10.1242/dev.02324 PubMedCrossRefGoogle Scholar
  128. Theil T, Alvarez-Bolado G, Walter A, Rüther U (1999) Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126:3561–3571.  https://doi.org/10.1038/ng1196-353 PubMedGoogle Scholar
  129. Vincent SD, Dunn NR, Hayashi S et al (2003) Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev 17:1646–1662.  https://doi.org/10.1101/gad.1100503 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Warr N, Powles-Glover N, Chappell A et al (2008) Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17:2986–2996.  https://doi.org/10.1093/hmg/ddn197 PubMedCrossRefGoogle Scholar
  131. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056.  https://doi.org/10.1007/s00467-010-1731-7 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Weiss K, Kruszka P, Guillen Sacoto MJ et al (2017) In-depth investigations of adolescents and adults with holoprosencephaly identify unique characteristics. Genet Med.  https://doi.org/10.1038/gim.2017.68
  133. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116PubMedCrossRefGoogle Scholar
  134. Xavier GM, Seppala M, Barrell W et al (2016) Hedgehog receptor function during craniofacial development. Dev Biol 415:198–215PubMedCrossRefGoogle Scholar
  135. Ybot-Gonzalez P, Gaston-Massuet C, Girdler G et al (2007) Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development 134:3203–3211.  https://doi.org/10.1242/dev.008177 PubMedCrossRefGoogle Scholar
  136. Yu W, McDonnell K, Taketo MM, Bai CB (2008) Wnt signaling determines ventral spinal cord cell fates in a time-dependent mannerGoogle Scholar
  137. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Early Mammalian Development Laboratory, John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia

Personalised recommendations