Met Activation and Carcinogenesis

  • Nariyoshi Shinomiya
  • Qian Xie
  • George F. Vande Woude
Part of the Current Human Cell Research and Applications book series (CHCRA)


MET is a tyrosine kinase receptor that transduces intracellular signaling to activate the MAPK, PI3K-Akt, and cadherin pathways (among others). In cancer cells, MET is activated upon stimulation by its only ligand, hepatocyte growth factor/scatter factor (HGF/SF), or becomes active due to mutations or amplifications that produce constitutive activation of the MET kinase. The biological consequences of HGF/SF-MET signaling include cell proliferation, cell cycle progression, increased cell motility and invasive activity, and degradation of extracellular matrices, which can lead to oncogenesis. Aberrant MET signaling contributes to the carcinogenesis of hereditary cancers and also plays a major role in the spread of cancer cells; such signaling indicates a poor prognosis for cancer patients. Genetically engineered mouse models are important tools for studying the spontaneous development of tumors mediated by HGF/SF-MET signaling. Such tumors include carcinomas, sarcomas, and lymphomas, demonstrating the breadth of MET signaling as driving force of cancer. In this chapter, we will discuss the role of HGF/SF-MET signaling in carcinogenesis and the animal models used in developing therapeutic strategies that target the HGF/SF-MET signaling pathways.


Met/MET HGF/SF Carcinogenesis Epithelial–mesenchymal transition (E–MT) Dysregulation Constitutive activation Genetically engineered mouse models 



human MET


mouse Met



This work was supported in part by a Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (to N. S.; #15H04315), by the Stephen M. Coffman Charitable Trust and ETSU start-up funds (to Q. X.), and by the generosity of the Jay & Betty Van Andel Foundation (to G. V. W.). We are very grateful to David Nadziejka (Van Andel Research Institute) for technical editing of the manuscript.


  1. 1.
    Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, et al. Mechanism of met oncogene activation. Cell. 1986;45:895–904.PubMedCrossRefGoogle Scholar
  2. 2.
    Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327:239–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342:440–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.PubMedCrossRefGoogle Scholar
  7. 7.
    Birchmeier C, Brohmann H. Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol. 2000;12:725–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149:1419–32.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lozano E, Frasa MA, Smolarczyk K, Knaus UG, Braga VM. PAK is required for the disruption of E-cadherin adhesion by the small GTPase Rac. J Cell Sci. 2008;121:933–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bosse T, Ehinger J, Czuchra A, Benesch S, Steffen A, Wu X, et al. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol. 2007;27:6615–28.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, et al. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem. 2000;275:10772–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID, et al. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol. 2001;21:4968–84.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A. 2001;98:247–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Wickramasinghe D, Kong-Beltran M. Met activation and receptor dimerization in cancer: a role for the Sema domain. Cell Cycle. 2005;4:683–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell. 2004;6:75–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23:2325–35.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A. 2013;110:E2987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tolbert WD, Daugherty J, Gao C, Xie Q, Miranti C, Gherardi E, et al. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proc Natl Acad Sci U S A. 2007;104:14592–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zioncheck TF, Richardson L, Liu J, Chang L, King KL, Bennett GL, et al. Sulfated oligosaccharides promote hepatocyte growth factor association and govern its mitogenic activity. J Biol Chem. 1995;270:16871–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials. 2004;25:4513–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Nusrat A, Parkos CA, Bacarra AE, Godowski PJ, Delp-Archer C, Rosen EM, et al. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest. 1994;93:2056–65.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Danilkovitch-Miagkova A, Zbar B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest. 2002;109:863–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Iwazawa T, Shiozaki H, Doki Y, Inoue M, Tamura S, Matsui S, et al. Primary human fibroblasts induce diverse tumor invasiveness: involvement of HGF as an important paracrine factor. Jpn J Cancer Res. 1996;87:1134–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Kataoka H, Tanaka H, Nagaike K, Uchiyama S, Itoh H. Role of cancer cell-stroma interaction in invasive growth of cancer cells. Hum Cell. 2003;16:1–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Tyan SW, Kuo WH, Huang CK, Pan CC, Shew JY, Chang KJ, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One. 2011;6:e15313.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8:e63243.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ, et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci U S A. 2010;107:11026–31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tamura M, Arakaki N, Tsubouchi H, Takada H, Daikuhara Y. Enhancement of human hepatocyte growth factor production by interleukin-1 alpha and −1 beta and tumor necrosis factor-alpha by fibroblasts in culture. J Biol Chem. 1993;268:8140–5.PubMedGoogle Scholar
  30. 30.
    Ohnishi T, Suwa M, Oyama T, Arakaki N, Torii M, Daikuhara Y. Prostaglandin E2 predominantly induces production of hepatocyte growth factor/scatter factor in human dental pulp in acute inflammation. J Dent Res. 2000;79:748–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Rosen EM, Joseph A, Jin L, Rockwell S, Elias JA, Knesel J, et al. Regulation of scatter factor production via a soluble inducing factor. J Cell Biol. 1994;127:225–34.PubMedCrossRefGoogle Scholar
  32. 32.
    To, Y, Dohi M, Matsumoto K, Tanaka R, Sato A, Nakagome K, et al. A two-way interaction between hepatocyte growth factor and interleukin-6 in tissue invasion of lung cancer cell line. Am J Respir Cell Mol Biol. 2002;27:220–6.CrossRefGoogle Scholar
  33. 33.
    Cortner J, Vande Woude GF, Rong S. The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS. 1995;74:89–121.PubMedGoogle Scholar
  34. 34.
    Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp. 1997;212:119–30; discussion 130–112, 148–154.Google Scholar
  35. 35.
    Rahimi N, Tremblay E, McAdam L, Park M, Schwall R, Elliott B. Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ. 1996;7:263–70.PubMedGoogle Scholar
  36. 36.
    Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, et al. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2007;248:219–28.PubMedCrossRefGoogle Scholar
  37. 37.
    Yi S, Tsao MS. Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia. 2000;2:226–34.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wong AS, Pelech SL, Woo MM, Yim G, Rosen B, Ehlen T, et al. Coexpression of hepatocyte growth factor-Met: an early step in ovarian carcinogenesis? Oncogene. 2001;20:1318–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Wojcik EJ, Sharifpoor S, Miller NA, Wright TG, Watering R, Tremblay EA, et al. A novel activating function of c-Src and Stat3 on HGF transcription in mammary carcinoma cells. Oncogene. 2006;25:2773–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Wright TG, Singh VK, Li JJ, Foley JH, Miller F, Jia Z, et al. Increased production and secretion of HGF alpha-chain and an antagonistic HGF fragment in a human breast cancer progression model. Int J Cancer. 2009;125:1004–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell. 2004;6:61–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, et al. Inhibition of the met receptor in mesothelioma. Clin Cancer Res. 2005;11:8122–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A. 1997;94:11445–50.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Giordano S, Maffe A, Williams TA, Artigiani S, Gual P, Bardelli A, et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB J. 2000;14:399–406.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18:2343–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16:68–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Olivero M, Valente G, Bardelli A, Longati P, Ferrero N, Cracco C, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82:640–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Park WS, Dong SM, Kim SY, Na EY, Shin MS, Pi JH, et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 1999;59:307–10.PubMedGoogle Scholar
  49. 49.
    Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19:1547–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Ghadjar P, Blank-Liss W, Simcock M, Hegyi I, Beer KT, Moch H, et al. MET Y1253D-activating point mutation and development of distant metastasis in advanced head and neck cancers. Clin Exp Metastasis. 2009;26:809–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A. 1998;95:14417–22.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Giordano S, Bardelli A, Zhen Z, Menard S, Ponzetto C, Comoglio PM. A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc Natl Acad Sci U S A. 1997;94:13868–72.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nam HJ, Chae S, Jang SH, Cho H, Lee JH. The PI3K-Akt mediates oncogenic Met-induced centrosome amplification and chromosome instability. Carcinogenesis. 2010;31:1531–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhawe K, Mendoza N, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66:283–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Merlin S, Pietronave S, Locarno D, Valente G, Follenzi A, Prat M. Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene. Cancer Sci. 2009;100:633–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Bergstrom JD, Hermansson A, Diaz de Stahl T, Heldin NE. Non-autocrine, constitutive activation of Met in human anaplastic thyroid carcinoma cells in culture. Br J Cancer. 1999;80:650–6.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Qian CN, Guo X, Cao B, Kort EJ, Lee CC, Chen J, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res. 2002;62:589–96.PubMedGoogle Scholar
  60. 60.
    Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH, et al. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 2013;73:5580–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153:1023–34.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67:967–75.PubMedCrossRefGoogle Scholar
  63. 63.
    Shinomiya N, Vande Woude GF. Suppression of met expression: a possible cancer treatment. Commentary re: S. J. Kim et al., reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin Cancer Res. 14:5161-5170, 2003. Clin Cancer Res. 2003;9:5085–90.PubMedGoogle Scholar
  64. 64.
    Rusciano D, Lorenzoni P, Burger M. Murine models of liver metastasis. Invasion Metastasis. 1994;14:349–61.PubMedGoogle Scholar
  65. 65.
    Rusciano D, Lorenzoni P, Burger MM. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene. 1995;11:1979–87.PubMedGoogle Scholar
  66. 66.
    Imai J, Watanabe M, Sasaki M, Yamaguchi R, Tateyama S, Sugano S. Induction of c-met proto-oncogene expression at the metastatic site. Clin Exp Metastasis. 1999;17:457–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Elia G, Ren Y, Lorenzoni P, Zarnegar R, Burger MM, Rusciano D. Mechanisms regulating c-met overexpression in liver-metastatic B16-LS9 melanoma cells. J Cell Biochem. 2001;81:477–87.PubMedCrossRefGoogle Scholar
  68. 68.
    Shinomiya N, Sakamoto N, Matsuo H, Morimoto Y, Yoshimori A, Takahasi S, et al. In silico molecular design of small molecule inhibitors for Met receptor tyrosine kinase. In: 67th Annual Meeting of the Japanese Cancer Association, Nagoya, Japan; 2008.Google Scholar
  69. 69.
    Cooper CS, Tempest PR, Beckman MP, Heldin CH, Brookes P. Amplification and overexpression of the met gene in spontaneously transformed NIH3T3 mouse fibroblasts. EMBO J. 1986;5:2623–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Hudziak RM, Lewis GD, Holmes WE, Ullrich A, Shepard HM. Selection for transformation and met protooncogene amplification in NIH 3T3 fibroblasts using tumor necrosis factor alpha. Cell Growth Differ. 1990;1:129–34.PubMedGoogle Scholar
  71. 71.
    Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Peng Z, Zhu Y, Wang Q, Gao J, Li Y, Li Y, et al. Prognostic significance of MET amplification and expression in gastric cancer: a systematic review with meta-analysis. PLoS One. 2014;9:e84502.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Yamamoto S, Tsuda H, Miyai K, Takano M, Tamai S, Matsubara O. Accumulative copy number increase of MET drives tumor development and histological progression in a subset of ovarian clear-cell adenocarcinomas. Mod Pathol. 2012;25:122–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamashita Y, Akatsuka S, Shinjo K, Yatabe Y, Kobayashi H, Seko H, et al. Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis. PLoS One. 2013;8:e57724.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, et al. The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 2012;72:4537–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Saada E, Peoc’h M, Decouvelaere AV, Collard O, Peyron AC, Pedeutour F. CCND1 and MET genomic amplification during malignant transformation of a giant cell tumor of bone. J Clin Oncol. 2011;29:e86–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Miller CT, Lin L, Casper AM, Lim J, Thomas DG, Orringer MB, et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene. 2006;25:409–18.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yin X, Zhang T, Su X, Ji Y, Ye P, Fu H, et al. Relationships between chromosome 7 gain, MET gene copy number increase and MET protein overexpression in chinese papillary renal cell carcinoma patients. PLoS One. 2015;10:e0143468.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fushida S, Yonemura Y, Urano T, Yamaguchi A, Miyazaki I, Nakamura T, et al. Expression of hepatocyte growth factor(hgf) and C-met gene in human gastric-cancer cell-lines. Int J Oncol. 1993;3:1067–70.PubMedGoogle Scholar
  82. 82.
    Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, et al. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res. 2004;64:7962–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Fujisaki T, Tanaka Y, Fujii K, Mine S, Saito K, Yamada S, et al. CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res. 1999;59:4427–34.PubMedGoogle Scholar
  84. 84.
    Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SM, Stewart RL, et al. Integrin alpha6beta4 promotes autocrine epidermal growth factor receptor (EGFR) signaling to stimulate migration and invasion toward hepatocyte growth factor (HGF). J Biol Chem. 2015;290:27228–38.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rahman S, Patel Y, Murray J, Patel KV, Sumathipala R, Sobel M, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 2005;6:8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hui AY, Meens JA, Schick C, Organ SL, Qiao H, Tremblay EA, et al. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem. 2009;107:1168–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Nakamura Y, Matsubara D, Goto A, Ota S, Sachiko O, Ishikawa S, et al. Constitutive activation of c-Met is correlated with c-Met overexpression and dependent on cell-matrix adhesion in lung adenocarcinoma cell lines. Cancer Sci. 2008;99:14–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E. Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene. 2011;30:1566–76.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang R, Kobayashi R, Bishop JM. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996;93:8425–30.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol. 2009;10:709–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang YW, Staal B, Essenburg C, Lewis S, Kaufman D, Vande Woude GF. Strengthening context-dependent anticancer effects on non-small cell lung carcinoma by inhibition of both MET and EGFR. Mol Cancer Ther. 2013;12:1429–41.PubMedCrossRefGoogle Scholar
  92. 92.
    Johnson J, Ascierto ML, Mittal S, Newsome D, Kang L, Briggs M, et al. Genomic profiling of a hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. J Transl Med. 2015;13:306.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ghosh G, Lian X, Kron SJ, Palecek SP. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors. BMC Cancer. 2012;12:95.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine. 2017;98:97–106.PubMedCrossRefGoogle Scholar
  95. 95.
    Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A, et al. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 2001;98:12032–37.Google Scholar
  96. 96.
    Luo B, Wang Y, Wang XF, Gao Y, Huang BH, Zhao P. Correlation of Epstein-Barr virus and its encoded proteins with Helicobacter pylori and expression of c-met and c-myc in gastric carcinoma. World J Gastroenterol. 2006;12:1842–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516:400–4.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Song X, Xin N, Wang W, Zhao C. Wnt/beta-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 2015;6:35579–88.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Nakamura M, Takahashi T, Matsui H, Baniwa Y, Takahashi S, Murayama SY, et al. Alteration of angiogenesis in Helicobacter heilmannii-induced mucosa-associated lymphoid tissue lymphoma: interaction with c-Met and hepatocyte growth factor. J Gastroenterol Hepatol. 2014;29(Suppl 4):70–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Ivanovska I, Zhang C, Liu AM, Wong KF, Lee NP, Lewis P, et al. Gene signatures derived from a c-MET-driven liver cancer mouse model predict survival of patients with hepatocellular carcinoma. PLoS One. 2011;6:e24582.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Xie Q, Su Y, Dykema K, Johnson J, Koeman J, De Giorgi V, et al. Overexpression of HGF promotes HBV-induced hepatocellular carcinoma progression and is an effective indicator for met-targeting therapy. Genes Cancer. 2013;4:247–60.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sakamoto N, Tsujimoto H, Takahata R, Cao B, Zhao P, Ito N, et al. MET4 expression predicts poor prognosis of gastric cancers with Helicobacter pylori infection. Cancer Sci. 2017;108:322–30.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Chochi K, Ichikura T, Kinoshita M, Majima T, Shinomiya N, Tsujimoto H, et al. Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells. Clin Cancer Res. 2008;14:2909–17.PubMedCrossRefGoogle Scholar
  104. 104.
    Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 2003;161:249–55.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Franke R, Muller M, Wundrack N, Gilles ED, Klamt S, Kahne T, et al. Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol. 2008;2:4.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC, et al. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem. 2006;281:34888–96.PubMedCrossRefGoogle Scholar
  107. 107.
    Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.PubMedCrossRefGoogle Scholar
  108. 108.
    Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 2005;202:1235–47.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bupathi M, Kaseb A, Meric-Bernstam F, Naing A. Hepatocellular carcinoma: where there is unmet need. Mol Oncol. 2015;9:1501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Barreiros AP, Sprinzl M, Rosset S, Hohler T, Otto G, Theobald M, et al. EGF and HGF levels are increased during active HBV infection and enhance survival signaling through extracellular matrix interactions in primary human hepatocytes. Int J Cancer. 2009;124:120–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Ozden M, Kalkan A, Demirdag K, Denk A, Kilic SS. Hepatocyte growth factor (HGF) in patients with hepatitis B and meningitis. J Infect. 2004;49:229–35.PubMedCrossRefGoogle Scholar
  112. 112.
    Rogler CE, Chisari FV. Cellular and molecular mechanisms of hepatocarcinogenesis. Semin Liver Dis. 1992;12:265–78.PubMedCrossRefGoogle Scholar
  113. 113.
    Annen K, Nojima T, Hata Y, Uchino J, Tanaka S, Matsuda M, et al. Analysis of the hepatocyte growth factor receptor in regeneration and oncogenesis of the liver. Gen Diagn Pathol. 1996;141:179–86.PubMedGoogle Scholar
  114. 114.
    Tward AD, Jones KD, Yant S, Kay MA, Wang R, Bishop JM. Genomic progression in mouse models for liver tumors. Cold Spring Harb Symp Quant Biol. 2005;70:217–24.PubMedCrossRefGoogle Scholar
  115. 115.
    Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13:827–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Graveel C, Su Y, Koeman J, Wang LM, Tessarollo L, Fiscella M, et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci U S A. 2004;101:17198–203.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Graveel CR, London CA, Vande Woude GF. A mouse model of activating Met mutations. Cell Cycle. 2005;4:518–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Fischer J, Palmedo G, von Knobloch R, Bugert P, Prayer-Galetti T, Pagano F, et al. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene. 1998;17:733–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20:66–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Graveel CR, DeGroot JD, Sigler RE, Vande Woude GF. Germline met mutations in mice reveal mutation- and background-associated differences in tumor profiles. PLoS One. 2010;5:e13586.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S, et al. Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106:12909–14.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 1998;58:5157–67.PubMedGoogle Scholar
  123. 123.
    Noonan FP, Otsuka T, Bang S, Anver MR, Merlino G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 2000;60:3738–43.PubMedGoogle Scholar
  124. 124.
    Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene. 2003;22:8498–508.PubMedCrossRefGoogle Scholar
  125. 125.
    Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7:1513–23.PubMedGoogle Scholar
  126. 126.
    Cao R, Bjorndahl MA, Gallego MI, Chen S, Religa P, Hansen AJ, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood. 2006;107:3531–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Stabile LP, Lyker JS, Land SR, Dacic S, Zamboni BA, Siegfried JM. Transgenic mice overexpressing hepatocyte growth factor in the airways show increased susceptibility to lung cancer. Carcinogenesis. 2006;27:1547–55.PubMedCrossRefGoogle Scholar
  128. 128.
    Yu Y, Merlino G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res. 2002;62:2951–6.PubMedGoogle Scholar
  129. 129.
    Zhang YW, Su Y, Lanning N, Gustafson M, Shinomiya N, Zhao P, et al. Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene. 2005;24:101–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, Birchmeier C. Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 2004;101:10608–13.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101:4477–82.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Gomez-Quiroz LE, Factor VM, Kaposi-Novak P, Coulouarn C, Conner EA, Thorgeirsson SS. Hepatocyte-specific c-Met deletion disrupts redox homeostasis and sensitizes to Fas-mediated apoptosis. J Biol Chem. 2008;283:14581–9.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Arechederra M, Carmona R, Gonzalez-Nunez M, Gutierrez-Uzquiza A, Bragado P, Cruz-Gonzalez I, et al. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim Biophys Acta. 2013;1832:2204–15.PubMedCrossRefGoogle Scholar
  134. 134.
    Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, et al. Hepatocyte growth factor/c-Met signaling is required for beta-cell regeneration. Diabetes. 2014;63:216–23.PubMedCrossRefGoogle Scholar
  135. 135.
    Marx-Stoelting P, Borowiak M, Knorpp T, Birchmeier C, Buchmann A, Schwarz M. Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor c-Met. Int J Cancer. 2009;124:1767–72.PubMedCrossRefGoogle Scholar
  136. 136.
    Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59:1145–56.PubMedCrossRefGoogle Scholar
  137. 137.
    Cui JJ. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem. 2014;57:4427–53.PubMedCrossRefGoogle Scholar
  138. 138.
    Gozdzik-Spychalska J, Szyszka-Barth K, Spychalski L, Ramlau K, Wojtowicz J, Batura-Gabryel H, et al. C-MET inhibitors in the treatment of lung cancer. Curr Treat Options in Oncol. 2014;15:670–82.CrossRefGoogle Scholar
  139. 139.
    Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G, Allersdorfer A, et al. A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. Mol Cancer Ther. 2013;12:2459–71.PubMedCrossRefGoogle Scholar
  140. 140.
    Vigna E, Chiriaco C, Cignetto S, Fontani L, Basilico C, Petronzelli F, et al. Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30. Mol Oncol. 2015;9:1760–72.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Diamond JR, Salgia R, Varella-Garcia M, Kanteti R, LoRusso PM, Clark JW, et al. Initial clinical sensitivity and acquired resistance to MET inhibition in MET-mutated papillary renal cell carcinoma. J Clin Oncol. 2013;31:e254–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Medova M, Pochon B, Streit B, Blank-Liss W, Francica P, Stroka D, et al. The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants. Mol Cancer Ther. 2013;12:2415–24.PubMedCrossRefGoogle Scholar
  143. 143.
    Tiedt R, Degenkolbe E, Furet P, Appleton BA, Wagner S, Schoepfer J, et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011;71:5255–64.PubMedCrossRefGoogle Scholar
  144. 144.
    Landi L, Minuti G, D’Incecco A, Cappuzzo F. Targeting c-MET in the battle against advanced nonsmall-cell lung cancer. Curr Opin Oncol. 2013;25:130–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem. 2000;275:8806–11.PubMedCrossRefGoogle Scholar
  146. 146.
    Kishiki T, Ohnishi H, Masaki T, Ohtsuka K, Ohkura Y, Furuse J, et al. Overexpression of MET is a new predictive marker for anti-EGFR therapy in metastatic colorectal cancer with wild-type KRAS. Cancer Chemother Pharmacol. 2014;73:749–57.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Koeppen H, Rost S, Yauch RL. Developing biomarkers to predict benefit from HGF/MET pathway inhibitors. J Pathol. 2014;232:210–8.PubMedCrossRefGoogle Scholar
  148. 148.
    An N, Xiong Y, LaRue AC, Kraft AS, Cen B. Activation of Pim kinases is sufficient to promote resistance to MET small-molecule inhibitors. Cancer Res. 2015;75:5318–28.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Infante JR, Rugg T, Gordon M, Rooney I, Rosen L, Zeh K, et al. Unexpected renal toxicity associated with SGX523, a small molecule inhibitor of MET. Investig New Drugs. 2013;31:363–9.CrossRefGoogle Scholar
  150. 150.
    Cepero V, Sierra JR, Corso S, Ghiso E, Casorzo L, Perera T, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70:7580–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nariyoshi Shinomiya
    • 1
  • Qian Xie
    • 2
  • George F. Vande Woude
    • 3
  1. 1.Department of Integrative Physiology and Bio-Nano MedicineNational Defense Medical CollegeTokorozawaJapan
  2. 2.Department of Biomedical SciencesCenter of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State UniversityJohnsonUSA
  3. 3.Distinguished Scientific Fellow, EmeritusVan Andel Research InstituteGrand RapidsUSA

Personalised recommendations