Skip to main content

Molecular Designing of Small-Molecule Inhibitors for Apoptosis Regulation

  • Chapter
  • First Online:
Book cover Regulation of Signal Transduction in Human Cell Research

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

  • 630 Accesses

Abstract

Apoptosis is a distinctive mode of programmed cell death, which is involved in organ life cycle in multicellular organism. Dysregulation of apoptotic processes has been implicated in a wide variety of diseases, such as cancer, neurodegenerative disorders, and ischemic injury. To date, many kinds of key proteins in apoptotic processes have been identified and targeted for therapeutic strategies. Several effective small molecules have been designed to modulate the key regulatory proteins, such as Bcl-2, XIAP, MDM2, and caspases. This chapter reviews the current development of small-molecule inhibitors targeting apoptosis regulatory proteins, and as an example, our structure-based approaches for the designing of caspase-3-specific inhibitors will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockshin RA, Williams CM. Programmed cell death—I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123–33.

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301(1):5–17.

    Article  PubMed  Google Scholar 

  4. Toné S, Sugimoto K, Tanda K, et al. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. 2007;313(16):3635–44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980;284(5756):555–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  7. Takasawa R, Nakamura H, Mori T, et al. Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC. Apoptosis. 2005;10(5):1121–30.

    Article  CAS  PubMed  Google Scholar 

  8. Roulston A, Marcellus RC, Branton PE. Viruses and apoptosis. Annu Rev Microbiol. 1999;53:577–628.

    Article  CAS  PubMed  Google Scholar 

  9. Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun. 1999;266(3):699–717.

    Article  CAS  PubMed  Google Scholar 

  10. Kim TW, Pettingell WH, Jung YK, et al. Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science. 1997;277(5324):373–6.

    Article  CAS  PubMed  Google Scholar 

  11. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54(7):1024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35(3):953–66.

    Article  CAS  PubMed  Google Scholar 

  13. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baskin-Bey ES, Washburn K, Feng S, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant. 2007;7(1):218–25.

    Article  CAS  PubMed  Google Scholar 

  15. Plati J, Bucur O, Khosravi-Far R. Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem. 2008;104(4):1124–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birchall MA, Winterford CM, Allan DJ, et al. Apoptosis in normal epithelium, premalignant and malignant lesions of the oropharynx and oral cavity: a preliminary study. Eur J Cancer B Oral Oncol. 1995;31B(6):380–3.

    Article  CAS  PubMed  Google Scholar 

  17. Weinstein RS, Manolagas SC. Apoptosis and osteoporosis. Am J Med. 2000;108(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  18. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124(3):511–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.

    PubMed  PubMed Central  Google Scholar 

  20. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13(3):239–52.

    Article  CAS  PubMed  Google Scholar 

  21. Scott FL, Denault J-B, Riedl SJ, et al. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 2005;24(3):645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11(2):519–27.

    Article  CAS  PubMed  Google Scholar 

  23. Cai Q, Sun H, Peng Y, et al. A potent and orally active antagonist of multiple inhibitor of apoptosis proteins (IAPs) (SM-406/AT-406) in clinical development for cancer treatment. J Med Chem. 2011;54(8):2714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408(6815):1008–12.

    Article  CAS  PubMed  Google Scholar 

  25. Kvansakul M, Hinds MG. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis. 2013;4:e909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274(5289):948–53.

    Article  CAS  PubMed  Google Scholar 

  27. Wei Y, Fox T, Chambers SP, et al. The structures of caspases-1, −3, −7 and −8 reveal the basis for substrate and inhibitor selectivity. Chem Biol. 2000;7(6):423–32.

    Article  CAS  PubMed  Google Scholar 

  28. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  30. Waring P, Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol. 1999;77(4):312–7.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider P, Thome M, Burns K, et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity. 1997;7(6):831–6.

    Article  CAS  PubMed  Google Scholar 

  32. Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013;5(5):a008698.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang DW, Xing Z, Capacio VL, et al. Interdimer processing mechanism of procaspase-8 activation. EMBO J. 2003;22(16):4132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stennicke HR, Jürgensmeier JM, Shin H, et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem. 1998;273(42):27084–90.

    Article  CAS  PubMed  Google Scholar 

  35. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391(6662):43–50.

    Article  CAS  PubMed  Google Scholar 

  36. Los M, Mozoluk M, Ferrari D, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell. 2002;13(3):978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahara S, Aoto M, Eguchi Y, et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature. 1999;401(6749):168–73.

    Article  CAS  PubMed  Google Scholar 

  38. Wolf BB, Schuler M, Echeverri F, et al. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem. 1999;274(43):30651–6.

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Zhu H, CJ X, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

    Article  CAS  PubMed  Google Scholar 

  40. Bellail AC, Qi L, Mulligan P, et al. TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials. 2009;4(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Wang X, Yu H, et al. Small-molecule activation of the TRAIL receptor DR5 in human cancer cells. Nat Chem Biol. 2013;9(2):84–9.

    Article  PubMed  Google Scholar 

  42. Saelens X, Festjens N, Vande Walle L, et al. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23(16):2861–74.

    Article  CAS  PubMed  Google Scholar 

  43. Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002;84(2–3):203–14.

    Article  CAS  PubMed  Google Scholar 

  44. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells. 1998;3(11):697–707.

    Article  CAS  PubMed  Google Scholar 

  45. Shamas-Din A, Kale J, Leber B, et al. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(4):a008714.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–406.

    Article  CAS  PubMed  Google Scholar 

  47. Ding J, Zhang Z, Roberts GJ, et al. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. J Biol Chem. 2010;285(37):28749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7(12):989–1000.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408(6815):1004–8.

    Article  CAS  PubMed  Google Scholar 

  50. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10(8):561–74.

    Article  CAS  PubMed  Google Scholar 

  51. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1(14):1001–8.

    CAS  PubMed  Google Scholar 

  52. Zhao Y, Aguilar A, Bernard D, et al. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J Med Chem. 2015;58(3):1038–52.

    Article  CAS  PubMed  Google Scholar 

  53. Shangary S, Johnson DE. Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-xL and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry. 2002;41(30):9485–95.

    Article  CAS  PubMed  Google Scholar 

  54. Petros AM, Nettesheim DG, Wang Y, et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 2000;9(12):2528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin H, Lee GI, Sedey KA, et al. Terphenyl-based Bak BH3 alpha-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. J Am Chem Soc. 2005;127(29):10191–6.

    Article  CAS  PubMed  Google Scholar 

  56. Cao X, Yap JL, Newell-Rogers MK, et al. The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein interactions with Bak. Mol Cancer. 2013;12(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Z, Song T, Feng Y, et al. Bcl-2/MDM2 dual inhibitors based on universal pyramid-like α-helical mimetics. J Med Chem. 2016;59(7):3152–62.

    Article  CAS  PubMed  Google Scholar 

  58. Petros AM, Dinges J, Augeri DJ, et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem. 2006;49(2):656–63.

    Article  CAS  PubMed  Google Scholar 

  59. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81.

    Article  CAS  PubMed  Google Scholar 

  60. Wei Y, Fan T, Yu M. Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin Shanghai. 2008;40(4):278–88.

    Article  PubMed  Google Scholar 

  61. Shiraki K, Sugimoto K, Yamanaka Y, et al. Overexpression of X-linked inhibitor of apoptosis in human hepatocellular carcinoma. Int J Mol Med. 2003;12(5):705–8.

    CAS  PubMed  Google Scholar 

  62. Sharma SK, Straub C, Zawel L. Development of peptidomimetics targeting IAPs. Int J Pept Res Ther. 2006;12(1):21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Flygare JA, Beresini M, Budha N, et al. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem. 2012;55(9):4101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brunckhorst MK, Lerner D, Wang S, et al. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. Cancer Biol Ther. 2012;13(9):804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell. 2007;131(4):669–81.

    Article  CAS  PubMed  Google Scholar 

  66. Eschenburg G, Eggert A, Schramm A, et al. Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-α-independent apoptosis. Cancer Res. 2012;72(10):2645–56.

    Article  CAS  PubMed  Google Scholar 

  67. Benetatos CA, Mitsuuchi Y, Burns JM, et al. Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models. Mol Cancer Ther. 2014;13(4):867–79.

    Article  CAS  PubMed  Google Scholar 

  68. Seigal BA, Connors WH, Fraley A, et al. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J Med Chem. 2015;58(6):2855–61.

    Article  CAS  PubMed  Google Scholar 

  69. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  CAS  PubMed  Google Scholar 

  71. Vassilev LT, BT V, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–8.

    Article  CAS  PubMed  Google Scholar 

  72. Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009;49:223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vu B, Wovkulich P, Pizzolato G, et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 2013;4(5):466–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding Q, Zhang Z, Liu J-J, et al. Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J Med Chem. 2013;56(14):5979–83.

    Article  CAS  PubMed  Google Scholar 

  75. Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20(5):299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A. 2008;105(10):3933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reed D, Shen Y, Shelat AA, et al. Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem. 2010;285(14):10786–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bista M, Smithson D, Pecak A, et al. On the mechanism of action of SJ-172550 in inhibiting the interaction of MDM4 and p53. PLoS One. 2012;7(6):e37518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Graves B, Thompson T, Xia M, et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci U S A. 2012;109(29):11788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol. 1996;3(7):619–25.

    Article  CAS  PubMed  Google Scholar 

  81. Lazebnik YA, Kaufmann SH, Desnoyers S, et al. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994;371(6495):346–7.

    Article  CAS  PubMed  Google Scholar 

  82. Garcia-Calvo M, Peterson EP, Leiting B, et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem. 1998;273(49):32608–13.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshimori A, Takasawa R, Tanuma S. A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score. BMC Pharmacol. 2004;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Morris GM, Goodsell DS, Haliday RS, et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem. 1998;19(14):1639–62.

    Article  CAS  Google Scholar 

  85. Na S, Chuang TH, Cunningham A, et al. D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem. 1996;271(19):11209–13.

    Article  CAS  PubMed  Google Scholar 

  86. Yoshimori A, Sakai J, Sunaga S, et al. Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO. BMC Pharmacol. 2007;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sakai J, Yoshimori A, Nose Y, et al. Structure-based discovery of a novel non-peptidic small molecular inhibitor of caspase-3. Bioorg Med Chem. 2008;16(9):4854–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Yoshimori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimori, A., Tanuma, SI. (2018). Molecular Designing of Small-Molecule Inhibitors for Apoptosis Regulation. In: Shinomiya, N., Kataoka, H., Xie, Q. (eds) Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7296-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7296-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7295-6

  • Online ISBN: 978-981-10-7296-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics