Skip to main content

Screening and Characterization of Pyrene-Degrading Bacterium from Oil-Contaminated Sites Around Chandigarh

  • Conference paper
  • First Online:
Waste Management and Resource Efficiency

Abstract

Polyaromatic hydrocarbons (PAHs) are organic compounds with two or more conjoined benzene rings having low solubility in water. They are widely distributed contaminants that have detrimental biological effects, toxicity and carcinogenicity. PAHs persist in the environment for many years because of their hydrophobicity and adsorption to solid particles. Their occurrence in the environment is largely a result of anthropogenic emissions such as incomplete combustion of fossil fuels, accidental oil spills, motor vehicles, waste incineration, pipe leakages. Due to their ubiquitous occurrence, bioaccumulation potential, recalcitrance, carcinogenic and mutagenic activity, the PAHs have aroused significant environmental concern. In the present study, isolates capable of utilizing pyrene at higher concentrations were screened and one strain found to have good growth at 20 mg/L was identified on the basis of its morphology and biochemical characteristics. The isolate was gram-negative, rod-shaped and non-spore-forming bacteria. At its optimized conditions (pH 7, temperature 30 °C), the novel strain Acinetobacter sp. Nfl showed good ability to degrade pyrene (84.6%), after 30 days of incubation in minimal medium, as determined by gas chromatography. Strains belonging to the genus of Acinetobacter are least studied for degrading polyaromatic hydrocarbons, but they showed ability to degrade HMW-PAHs with high efficiency. These findings indicate a great potential of these species for oil pollutants degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levengood, J. M., & Schaeffer, D. J. (2011). Polycyclic aromatic hydrocarbons in fish and crayfish from the Calumet region of southwestern Lake Michigan. Ecotoxicology, 20, 1411–1421. https://doi.org/10.1007/s10646-011-0698-x.

    Article  CAS  Google Scholar 

  2. Ben Hassine, S., Hammami, B., Ben Ameur, W., et al. (2014). Particulate polycyclic aromatic hydrocarbons (PAH) in the atmosphere of Bizerte City, Tunisia. Bulletin of Environmental Contamination and Toxicology, 93, 375–382. https://doi.org/10.1007/s00128-014-1303-9.

    Article  CAS  Google Scholar 

  3. Karlsson, K., & Viklander, M. (2008). Polycyclic aromatic hydrocarbons (PAH) in water and sediment from gully pots. Water, Air, and Soil Pollution, 188, 271–282. https://doi.org/10.1007/s11270-007-9543-5.

    Article  CAS  Google Scholar 

  4. Von Lau, E., Gan, S., & Ng, H. K. (2012). Distribution and source apportionment of polycyclic aromatic hydrocarbons (pahs) in surface soils from five different locations in Klang Valley, Malaysia. Bulletin of Environmental Contamination and Toxicology, 88, 741–746. https://doi.org/10.1007/s00128-012-0527-9.

    Article  CAS  Google Scholar 

  5. Hassanvand, M. S., Naddafi, K., Faridi, S., et al. (2015). Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of the Total Environment, 527–528, 100–110. https://doi.org/10.1016/j.scitotenv.2015.05.001.

    Article  CAS  Google Scholar 

  6. Sugiura, K., Ishihara, M., Shimauchi, T., & Harayama, S. (1997). Physicochemical properties and biodegradability of crude oil. Environmental Science and Technology, 31, 45–51.

    Article  CAS  Google Scholar 

  7. Chaillana, F., Flècheb, A., Burya, E., Phantavonga, Y., Saliot, A., & Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology, 155(7), 587–595.

    Article  Google Scholar 

  8. Chaıneau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water Air Soil Pollution, 14, 419–440.

    Article  Google Scholar 

  9. Gogoi, B. K., Dutta, N. N., Goswami, P., & Mohan, T. R. (2003). A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Advances in Environmental Research, 7, 767–782.

    Article  CAS  Google Scholar 

  10. Margesin, R., Moertelmaier, C., & Mair, J. (2013). Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. International Biodeterioration and Biodegradation, 84, 185–191. https://doi.org/10.1016/j.ibiod.2012.05.004.

    Article  CAS  Google Scholar 

  11. Ntougias, S., Melidis, P., Navrozidou, E., & Tzegkas, F. (2015). Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater. International Biodeterioration and Biodegradation, 97, 151–158. https://doi.org/10.1016/j.ibiod.2014.11.009.

    Article  CAS  Google Scholar 

  12. Bezza, F. A., & Nkhalambayausi Chirwa, E. M. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644. https://doi.org/10.1016/j.chemosphere.2015.08.027.

    Article  CAS  Google Scholar 

  13. Cárdenas-Aquino, M. R., Salomón-Hernández, G., Aguilar-Chávez, A., Luna-Guido, M. L., Marsch, R., & Dendooven, L. (2014). Anthracene removal and mineral N dynamics in a surfactant-amended soil. Pedosphere, 24, 783–790. https://doi.org/10.1016/s1002-0160(14)60065-5.

    Article  Google Scholar 

  14. Yessica, G., Alejandro, A., Ronald, F., et al. (2013). Tolerance, growth and degradation of phenanthrene and benzo [a] pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Applied Soil Energy, 63, 105–111. https://doi.org/10.1016/j.apsoil.2012.09.010.

    Article  Google Scholar 

  15. Patel, V., Cheturvedula, S., & Madamwar, D. (2012). Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. Journal of Hazardous Materials, 201–202, 43–51. https://doi.org/10.1016/j.jhazmat.2011.11.002.

    Article  CAS  Google Scholar 

  16. Eibes, G., Cajthaml, T., Moreira, M. T., Feijoo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64, 408–414.

    Article  CAS  Google Scholar 

  17. Arca-Ramos, A., Eibes, G., Moreira, M. T., et al. (2014). Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chemical Engineering Journal, 240, 281–289. https://doi.org/10.1016/j.cej.2013.11.076.

    Article  CAS  Google Scholar 

  18. Arca-Ramos, A., Eibes, G., Feijoo, G., et al. (2015). Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Biochemical Engineering Journal, 93, 289–293. https://doi.org/10.1016/j.bej.2014.10.015.

    Article  CAS  Google Scholar 

  19. Ma, J., Xu, L., & Jia, L. (2013). Bioresource technology characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresource Technology, 140, 15–21. https://doi.org/10.1016/j.biortech.2013.03.184.

    Article  CAS  Google Scholar 

  20. Ghosh, I., Jasmine, J., & Mukherji, S. (2014). Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge. Bioresource Technology, 166, 548–558. https://doi.org/10.1016/j.biortech.2014.05.074.

    Article  CAS  Google Scholar 

  21. Bishnoi, K., Sain, U., Kumar, R., et al. (2009). Distribution and biodegradation of polycyclic aromatic hydrocarbons in contaminated sites of Hisar (india). Indian Journal of Experimental Biology, 47, 210–217.

    CAS  Google Scholar 

  22. Mahanty, B., Pakshirajan, K., & Venkata Dasu, V. (2008). Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresource Technology, 99, 2694–2698. https://doi.org/10.1016/j.biortech.2007.05.042.

    Article  CAS  Google Scholar 

  23. Sarma, S. J., & Pakshirajan, K. (2011). Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. International Biodeterioration and Biodegradation, 65, 73–77. https://doi.org/10.1016/j.ibiod.2010.09.004.

    Article  CAS  Google Scholar 

  24. Jia, C., Li, P., Li, X., et al. (2011). Degradation of pyrene in soils by extracellular polymeric substances ( EPS ) extracted from liquid cultures. Process Biochemistry, 46, 1627–1631. https://doi.org/10.1016/j.procbio.2011.05.005.

    Article  CAS  Google Scholar 

  25. Holt, J. H., Krieg, N. R., Sneath, P. H. A., et al. (1994). Bergey’s manual of determinative bacteriology ninth edition. European Journal of Paediatric Neurology: EJPN : Official Journal of the European Paediatric Neurology Society, 13, 560. https://doi.org/10.1016/j.ejpn.2008.10.006.

    Article  Google Scholar 

  26. Lu, J., Guo, C., Zhang, M., et al. (2014). Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14. International Biodeterioration and Biodegradation, 87, 75–80. https://doi.org/10.1016/j.ibiod.2013.11.004.

  27. Zhou, H., Wang, H., Huang, Y., & Fang, T. (2016). Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. International Biodeterioration and Biodegradation, 107, 62–69. https://doi.org/10.1016/j.ibiod.2015.10.022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, B., Puri, S., Kaur, J. (2019). Screening and Characterization of Pyrene-Degrading Bacterium from Oil-Contaminated Sites Around Chandigarh. In: Ghosh, S. (eds) Waste Management and Resource Efficiency. Springer, Singapore. https://doi.org/10.1007/978-981-10-7290-1_37

Download citation

Publish with us

Policies and ethics