Advertisement

Control of Renewable Energy Systems

  • Nasif MahmudEmail author
  • Ahmad Zahedi
  • Md. Shamiur Rahman
Chapter
  • 1.5k Downloads
Part of the Renewable Energy Sources & Energy Storage book series (RESES)

Abstract

The utilization of renewable energy system (RES) is becoming more and more popular rapidly to satisfy the ever-increasing energy demand. When a large number of RES is interconnected with traditional power systems, it arises several critical challenges for the operation of the system because of the intermittent nature of RES and generation-load imbalance. These challenges might cause the interruption of steady-state operation of the system and interrupt power supply to consumers. This chapter attempts to present detailed discussions on the necessity of implementation of control techniques, impacts of large-scale RES integration on the operation and protection of the system, the technical challenges that arise due to the large-scale RES interconnection, feeder voltage rise issues, different control techniques to resolve challenging issues and islanded operation.

Keywords

Distribution network Voltage regulation Distributed generation Battery Renewable energy Micro grid Islanded operation 

References

  1. 1.
    Mahmud N, Zahedi A (2016) Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew Sustain Energy Rev 64:582–595CrossRefGoogle Scholar
  2. 2.
    Quezada VM, Abbad JR, Roman TGS (2006) Assessment of energy distribution losses for increasing penetration of distributed generation. IEEE Trans Power Syst 21(2):533–540CrossRefGoogle Scholar
  3. 3.
    Lopes JP, Hatziargyriou N, Mutale J, Djapic P, Jenkins N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electr Power Syst Res 77(9):1189–1203CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Tomsovic K (2002) Adaptive power flow method for distribution systems with dispersed generation. IEEE Trans Power Deliv 17(3):822–827CrossRefGoogle Scholar
  5. 5.
    Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19(4):764–773CrossRefGoogle Scholar
  6. 6.
    Tsikalakis AG, Hatziargyriou ND (2007) Environmental benefits of distributed generation with and without emissions trading. Energy Policy 35(6):3395–3409CrossRefGoogle Scholar
  7. 7.
    Gil HA, Joos G (2008) Models for quantifying the economic benefits of distributed generation. IEEE Trans Power Syst 23(2):327–335CrossRefGoogle Scholar
  8. 8.
    El-Khattam W, Salama MMA (2002) Impact of distributed generation on voltage profile in deregulated distribution system. In Proceedings of the power systems 2002 conference, impact of distributed generation, Clemson, SC, USA, pp 13–15Google Scholar
  9. 9.
    Ruiz-Romero S, Colmenar-Santos A, Mur-Pérez F, López-Rey Á (2014) Integration of distributed generation in the power distribution network: the need for smart grid control systems, communication and equipment for a smart city—use cases. Renew Sustain Energy Rev 38:223–234CrossRefGoogle Scholar
  10. 10.
    Elmarkabi IM (2004) Control and protection of distribution networks with distributed generators. A dissertation submitted to the Graduate Faculty of North Carolina State UniversityGoogle Scholar
  11. 11.
    Voltage control in distribution grids with distributed generation(I). Annals of mechanics and electricity. ICAI Engineers Association (Catholic Institute of Arts and Industries) 13th ICAI April 2012. (Revista Anales de la asociación de ingenierosdelICAI). http://www.revista-anales.es/web/n_13/seccion_3.html; 13 Apr 2012. Accessed 16 Feb 13
  12. 12.
    Zahedi A (2011) A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid. Renew Sustain Energy Rev 15(9):4775–4779CrossRefGoogle Scholar
  13. 13.
    Dugan RC, McGranaghan MF, Beaty HW (1996) Electrical power systems quality. McGraw-Hill, New York, NY, p c1996Google Scholar
  14. 14.
    Chen Z, Kong W (2007) Protection coordination based on a multi-agent for distribution power system with distribution generation units. In: International workshop on next generation regional energy system developmentGoogle Scholar
  15. 15.
    Liew SN, Strbac G (2002) Maximising penetration of wind generation in existing distribution networks. IEE Proc-Gener, Transm Distrib 149(3):256–262CrossRefGoogle Scholar
  16. 16.
    Hird CM, Leite H, Jenkins N, Li H (2004) Network voltage controller for distributed generation. IEE Proc-Gener, Transm Distrib 151(2):150–156CrossRefGoogle Scholar
  17. 17.
    Echavarría R, Claudio A, Cotorogea M (2007) Analysis, design, and implementation of a fast on-load tap changing regulator. IEEE Trans Power Electron 22(2):527–534CrossRefGoogle Scholar
  18. 18.
    Mahmud N, Zahedi A, Mahmud A (2017) A cooperative operation of novel PV inverter control scheme and storage energy management system based on ANFIS for voltage regulation of grid-tied PV system. IEEE Trans Indus InformGoogle Scholar
  19. 19.
    Mahmud N, Zahedi A, Mahmud A (2016) Dynamic voltage regulation of grid-tied renewable energy system with ANFIS. In: Australasian universities power engineering conference (AUPEC), 2016, pp 1–6. IEEEGoogle Scholar
  20. 20.
    Wood AJ, Wollenberg BF (2012) Power generation, operation, and control. Wiley, USAGoogle Scholar
  21. 21.
    Mahmud N, Zahedi A, Mahmud A (2016) ANFISPID-based voltage regulation strategy for grid-tied renewable DG system with ESS. In: Innovative smart grid technologies-Asia (ISGT-Asia), 2016 IEEE, pp 81–86. IEEEGoogle Scholar
  22. 22.
    McArthur SD, Davidson EM (2005) Concepts and approaches in multi-agent systems for power applications. In: Proceedings of the 13th international conference on intelligent systems application to power systems, 2005, pp 5-pp. IEEEGoogle Scholar
  23. 23.
    Rahman MS, Hossain MJ, Rafi FHM, Lu J (2016) A multi-purpose interlinking converter control for multiple hybrid AC/DC microgrid operations. In: Innovative smart grid technologies-Asia (ISGT-Asia), 2016 IEEE, pp 221–226. IEEEGoogle Scholar
  24. 24.
    Wang C, Nehrir MH (2008) Power management of a stand-alone wind/photovoltaic/fuel cell energy system. IEEE Trans Energy Convers 23(3):957–967CrossRefGoogle Scholar
  25. 25.
    Alvial-Palavicino C, Garrido-Echeverría N, Jiménez-Estévez G, Reyes L, Palma-Behnke R (2011) A methodology for community engagement in the introduction of renewable based smart microgrid. Energy Sustain Dev 15(3):314–323CrossRefGoogle Scholar
  26. 26.
    Bahrani B (2008) Islanding detection and control of islanded single and two-parallel distributed generation units (Doctoral dissertation)Google Scholar
  27. 27.
    Ieee, IEEE standard conformance test procedure for equipment interconnecting distributed resources with electric power systems, July 2005, ISBN 0738147362Google Scholar
  28. 28.
    Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3(4):1963–1976CrossRefGoogle Scholar
  29. 29.
    Ambrosio R, Widergren S (2007) A framework for addressing interoperability issues. In: Power engineering society general meeting, 2007. IEEE, pp. 1–5. IEEEGoogle Scholar
  30. 30.
    Guerrero JM, Vasquez JC, Matas J, Castilla M, de Vicuna LG (2009) Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Trans Industr Electron 56(3):726–736CrossRefGoogle Scholar
  31. 31.
    Guerrero JM, Vasquez JC, Matas J, De Vicuña LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Industr Electron 58(1):158–172CrossRefGoogle Scholar
  32. 32.
    Rahman MS, Hossain MJ, Lu J (2016) Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations. Energy Convers Manag 122:488–503CrossRefGoogle Scholar
  33. 33.
    Guerrero JM, Matas J, De Vicuna LGDV, Castilla M, Miret J (2006) Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans Industr Electron 53(5):1461–1470CrossRefGoogle Scholar
  34. 34.
    Guerrero JM, Matas J, de Vicuna LG, Castilla M, Miret J (2007) Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans Industr Electron 54(2):994–1004CrossRefGoogle Scholar
  35. 35.
    Guerrero JM, De Vicuna LG, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Industr Electron 52(4):1126–1135CrossRefGoogle Scholar
  36. 36.
    Guerrero JM, De Vicuña LG, Miret J, Matas J, Cruz J (2004) Output impedance performance for parallel operation of UPS inverters using wireless and average current-sharing controllers. In: Power electronics specialists conference, 2004. PESC 04. 2004 IEEE 35th annual, vol 4, pp 2482–2488. IEEEGoogle Scholar
  37. 37.
    Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831CrossRefGoogle Scholar
  38. 38.
    Rahman MS, Hossain MJ, Rafi FHM, Lu J (2016) EV charging in a commercial hybrid AC/DC microgrid: Configuration, control and impact analysis. In: Australasian Universities power engineering conference (AUPEC), 2016, pp 1–6. IEEEGoogle Scholar
  39. 39.
    Diaz G, Gonzalez-Moran C, Gomez-Aleixandre J, Diez A (2010) Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Trans Power Syst 25(1):489–496CrossRefGoogle Scholar
  40. 40.
    Lopes JP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924CrossRefGoogle Scholar
  41. 41.
    Yu X, Khambadkone AM, Wang H, Terence STS (2010) Control of parallel-connected power converters for low-voltage microgrid—part I: a hybrid control architecture. IEEE Trans Power Electron 25(12):2962–2970CrossRefGoogle Scholar
  42. 42.
    Delghavi MB, Yazdani A (2011) An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Trans Power Delivery 26(3):1764–1773CrossRefGoogle Scholar
  43. 43.
    Kim J, Guerrero JM, Rodriguez P, Teodorescu R, Nam K (2011) Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid. IEEE Trans Power Electron 26(3):689–701CrossRefGoogle Scholar
  44. 44.
    Zhong QC (2013) Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans Industr Electron 60(3):936–945CrossRefGoogle Scholar
  45. 45.
    Marwali MN, Jung JW, Keyhani A (2004) Control of distributed generation systems-Part II: Load sharing control. IEEE Trans Power Electron 19(6):1551–1561CrossRefGoogle Scholar
  46. 46.
    Lee TL, Cheng PT (2007) Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network. IEEE Trans Power Electron 22(5):1919–1927CrossRefGoogle Scholar
  47. 47.
    Sao CK, Lehn PW (2005) Autonomous load sharing of voltage source converters. IEEE Trans Power Delivery 20(2):1009–1016CrossRefGoogle Scholar
  48. 48.
    Sao CK, Lehn PW (2008) Control and power management of converter fed microgrids. IEEE Trans Power Syst 23(3):1088–1098CrossRefGoogle Scholar
  49. 49.
    Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625CrossRefGoogle Scholar
  50. 50.
    Cheng YJ, Sng EKK (2006) A novel communication strategy for decentralized control of paralleled multi-inverter systems. IEEE Trans Power Electron 21(1):148–156CrossRefGoogle Scholar
  51. 51.
    Sun X, Lee YS, Xu D (2003) Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme. IEEE Trans Power Electron 18(3):844–856CrossRefGoogle Scholar
  52. 52.
    Sun X, Wong LK, Lee YS, Xu D (2006) Design and analysis of an optimal controller for parallel multi-inverter systems. IEEE Trans Circuits Syst II Express Briefs 53(1):56–61CrossRefGoogle Scholar
  53. 53.
    Wu TF, Chen YK, Huang YH (2000) 3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Trans Industr Electron 47(2):273–281CrossRefGoogle Scholar
  54. 54.
    Hajimiragha AH, Zadeh MR (2013) Research and development of a microgrid control and monitoring system for the remote community of Bella Coola: challenges, solutions, achievements and lessons learned. In: International conference on smart energy grid engineering (SEGE), 2013 IEEE, pp 1–6. IEEEGoogle Scholar
  55. 55.
    Katiraei F, Iravani R, Hatziargyriou N, Dimeas A (2008) Microgrids management. IEEE Power Energy Mag 6(3)Google Scholar
  56. 56.
    Rahman MS, Rafi F, Hossain M, Lu J (2015) Power control and monitoring of the smart grid with evs. Veh Grid: Linking Electric Veh Smart Grid 79:107Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nasif Mahmud
    • 1
    Email author
  • Ahmad Zahedi
    • 1
  • Md. Shamiur Rahman
    • 2
  1. 1.College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  2. 2.Department of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations