Matrix Converter Switching and Commutation Strategies for Grid Integration of Distributed Generation

  • Md Sawkat Ali
  • M. Mejbaul HaqueEmail author
  • Peter Wolfs
Part of the Renewable Energy Sources & Energy Storage book series (RESES)


The matrix converter (MC) is becoming an alternative to power converters that brings size, weight and volume advantages for the grid interconnection of microgrids, distributed generation systems, and loads. The MC provides several technical benefits compared to the traditional power converters based on rectifier-inverters. The major advantage that promotes the use of the MC for grid interactive applications is its inherent capability of bidirectional power flow. MCs can be used as voltage regulators in low voltage (LV) distribution networks. Voltage balance and voltage regulation can be controlled by adding a series compensation voltage with a transformer. The MC supplies the injection transformer with an appropriate voltage. To achieve these functionalities, the MC hardware prototype needs both proper switching and commutation processes. The major focus of this chapter is to discuss different types of switching and commutation strategies for the MC that considers silicon carbide (SiC) based junction field effect transistors (JFETs), MOSFETs and SiC-based MOSFETs. The experimental results reveal that the four step commutation and SiC-based MOSFET devices are the best option for designing MCs for microgrid applications.


Matrix converter Commutation strategies Switching configuration Voltage regulation Renewable generation Experimental verification 


  1. 1.
    Burany N (1989) Safe control of four-quadrant switches. Conference Records of IEEE- Industry Applications Society Annual Meeting (IAS), 1-5 Oct 1989, San Diego, California, USA, pp 1190–1194Google Scholar
  2. 2.
    Empringham L, Wheeler PW, Clare JC (1998) Intelligent commutation of matrix converter Bi-directional switch cells using novel gate drive techniques. Proceedings of power electronics specialists conference (PESC),18–21 May 1998, Fukuoka, Japan, pp 707–713Google Scholar
  3. 3.
    Empringham L, Wheeler PW, Clare JC (2000) A matrix converter induction motor drive using intelligent gate drive level current commutation techniques. Proceedings of industry applications conference (IAC), pp 1936–1941Google Scholar
  4. 4.
    Iseghem PV (2008) CAS/CASR/CKSR series current transducers insulated highly accurate measurements from 1.5 to 50 ARMS. Available
  5. 5.
    Lettl J, Linhart L, Bauer L (2011) Matrix converter commutation time reduction. PIERS proceedingsGoogle Scholar
  6. 6.
    Ziogas PD, Khan SI, Rashid MH (1986) Analysis and design of forced commutated cycloconverter Structures with improved transfer characteristics. IEEE Trans Ind Appl 33(3):271–280Google Scholar
  7. 7.
    Neft CL, Schauder CD (1992) Theory and design of a 30-Hp matrix converter. IEEE Trans Ind Appl 28(3):546–551CrossRefGoogle Scholar
  8. 8.
    Beasant RR, Beattie WC, Refsum A (1990) An approach to the realisation of a high power Venturini converter. 21st Annual IEEE Conference on Power Electronics Specialists (PESC), San Antonio, TX, USA, 1990, pp 291–297Google Scholar
  9. 9.
    Wheeler PW, Grant DA (1993) A low loss matrix converter for AC variable-speed drives. Fifth European conference on power electronics and applications, 1993, Brighton, UK, pp 27–32Google Scholar
  10. 10.
    Wheeler PW, Rodriguez J, Clare JC, Empringham L, Weinstein A (2002) Matrix converters: a technology review. IEEE Trans Ind Electron 49(2):276–288CrossRefGoogle Scholar
  11. 11.
    Scott MJ, Fu L, Yao C, Zhang X, Xu L, Wang J, Zamora RD (2014) Design considerations for wide band gap based motor drive systems. IEEE international electric vehicle conference (IEVC), 17–19 Dec 2014, Michele Ceccucci, Italy, pp 1–6Google Scholar
  12. 12.
    Bernet S, Matsuo T, Lipo TA (1996) A matrix converter using reverse blocking NPTIGBT’s and optimised pulse patterns. IEEE power electronics specialists conference (PESC), June 1996, Baveno, Italy, pp 107–113Google Scholar
  13. 13.
    Pan CT, Chen TC, Shieh JJ (1993) A zero switching loss matrix converter. 24th annual IEEE power electronics specialists conference (PESC), 20–24 June 1993, Seattle, WA, USA, pp 545–550Google Scholar
  14. 14.
    Huang X, Du W, Lee FC, Li Q, Liu Z (2016) Avoiding Si MOSFET Avalanche and achieving zero-voltage switching for cascade GaN devices. IEEE Trans Power Electron 31(1):593–600 CrossRefGoogle Scholar
  15. 15.
    Klumpner C, Nielsen P, Boldea I, Blaabjerg F (2000) New steps towards a low-cost power electronic building block for matrix converters. Proceedings of industry applications society annual meeting (IAS), 08–12 Oct 2000, Rome, Italy, pp 1964–1971Google Scholar
  16. 16.
    Richmond J (2003) Hard-switched silicon IGBTs, cut switching losses in half with silicon carbide Schottky diodes. Available
  17. 17.
    Nakazawa M, Miyanagi T, Iwamoto S (2012) Hybrid Si-IGBT and SiC-SBD modules. Available
  18. 18.
    Ozpineci B, Chinthavali M, Tolbert L, Kashyap A, Mantooth H (2009) A 55-kW three-phase inverter with Si IGBTs and SiC Schottky diodes. IEEE Trans Ind Electron 45(1):278–285Google Scholar
  19. 19.
    Veereddy D, Lieser E, Gangi MD (2011) 1200 V/100 A Si IGBT/SiC diode co-pack cuts switching losses. Available
  20. 20.
    Empringham L, De Lillo L, Schulz M (2014) Design challenges in the use of silicon carbide JFETs in matrix converter applications. IEEE Trans Power Electron 29(5):2563–2573CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Josifovic I, Gerber JP, Ferreira JA (2012) Improving SiC JFET switching behavior under influence of circuit parasitic. IEEE Trans Power Electron 27(8):3843–3854CrossRefGoogle Scholar
  23. 23.
    Sheridan DC, Ritenour A, Kelley R, Bondarenko V, Casady JB (2010) Advances in SiC VJFETs for renewable and high-efficiency power electronics applications. In: proceedings international power electronic conference (ECCE), 21–24 June 2010, Sapporo, Japan, pp 3254–3258Google Scholar
  24. 24.
    Li Y, Alexandrov P, Zhao JH (2008) 1.88-mΩ cm2 1650-V normally on 4H-SiC TI-VJFET. IEEE Trans on Electron Dev 55(8):1880–1886Google Scholar
  25. 25.
    Veliadis V, Chen LS, Stewart EE, McCoy M, McNutt T, Van Campen S, Clarke C, De Salvo G (2005) 2.1 mΩ cm2, 1.6 kV 4H-silicon carbide VJFET for power applications. In: proceedings semiconductor device research symposium, 07–09 Dec 2005, Bethesda, MD, USA, pp 166–167Google Scholar
  26. 26.
    Lai JS, Yu H, Zhang J, Alexandrov P, Li Y, Zhao JH, Sheng K, Hefner A, Young M (2005) Characterization of normally-off SiC vertical JFET devices and inverter circuits. In: proceedings industry applications conference (IAC), 02–06 Oct 2005, Kowloon, Hong Kong, China, pp 404–409Google Scholar
  27. 27.
    Shillington R, Gaynor M, Harrison M, Heffernan B (2010) Applications of silicon carbide JFETs in power converters. In proceedings Australasian universities power engineering conference (AUPEC), 05–08 Dec 2010, Christchurch, New Zealand, pp 1–6Google Scholar
  28. 28.
    Peftitsis D, Tolstoy G, Antonopoulos A, Rabkowski J, Jang-Kwon L, Bakowski M, Angquist L, Nee HP (2010) High-power modular multilevel converters with SiC JFETs. IEEE energy conversion congress and exposition, pp 2148–2155Google Scholar
  29. 29.
    Cai C, Zhou W, Sheng K (2013) Characteristics and application of normally-Off SiC-JFETs in converters without antiparallel diodes. IEEE Trans Power Electron 28(10):4850–4860CrossRefGoogle Scholar
  30. 30.
    De Lillo L, Empringham L, Schulz M, Wheeler P (2011) A high power density SiC-JFET-based matrix converter. Proceedings of the 14th European conference on power electronics and applications (EPE), 30 Aug–01 Sept 2011, Birmingham, United Kingdom, pp 1–8Google Scholar
  31. 31.
    Pittini R, Zhang Z, Andersen MAE (2013) Switching performance evaluation of commercial SiC power devices (SiC JFET and SiC MOSFET) in relation to the gate driver complexity. IEEE annual international energy conversion congress and exhibition (ECCE) Asia, 03–06 June 2013, Melbourne, Australia, pp 233–239Google Scholar
  32. 32.
    ROHM (2017) SCT2120AF, N-channel SiC power MOSFET. Available
  33. 33.
    Bellone S, Corte FGD, Albanese LF, Pezzimenti F (2011) An analytical model of the forward I-V characteristics of 4 H-SiC p-i-n diodes valid for a wide range of temperature and current. IEEE Trans Power Electron 26(10):2835–2843CrossRefGoogle Scholar
  34. 34.
    Gachovska T, Hudgins JL, Bryant A, Santi E, Mantooth HA, Agarwal AK (2012) Modeling, simulation, and validation of a power SiC BJT. IEEE Trans Power Electron 27(10):4338–4346CrossRefGoogle Scholar
  35. 35.
    Sun K, Wu H, Lu J, Xing Y, Huang L (2014) Improved modeling of medium Voltage SiC MOSFET within wide temperature range. IEEE Trans Power Electron 29(5):2229–2237CrossRefGoogle Scholar
  36. 36.
    Wood RA, Salem TE (2011) Evaluation of a 1200 V, 800 A all-SiC dual module. IEEE Trans Power Electron 26(9):2504–2511CrossRefGoogle Scholar
  37. 37.
    Ning P, Wang F, Ngo KD (2011) High-temperature SiC power module electrical evaluation procedure. IEEE Trans Power Electron 26(11):3079–3083CrossRefGoogle Scholar
  38. 38.
    Xu Han TJ, Jiang D, Tolbert LM, Wang F, Nagashima J, Kim SJ, Kulkarni S, Barlow F (2013) Development of a SiC JFET-based six-pack power module for a fully integrated inverter. IEEE Trans Power Electron 28(3):1464–1478CrossRefGoogle Scholar
  39. 39.
    Safari S, Castellazzi A, Wheeler PW (2013) Performance evaluation of bidirectional SiC switch devices within matrix converter. 15th European conference on power electronics and applications (PEA), 02–06 Sept 2013, Lille, France, pp 1–9Google Scholar
  40. 40.
    Safari S, Castellazzi A, Wheeler P (2012) Evaluation of SiC power devices for a high power density matrix converter. In: IEEE energy conversion congress and exposition (ECCE), 15–20 Sept 2012, Raleigh, NC, USA pp 3934–3941Google Scholar
  41. 41.
    Funaki T, Balda JC, Junghans J, Kashyap AS, Mantooth HA, Barlow F, Kimoto T, Hikihara T (2007) Power conversion with SiC devices at extremely high ambient temperatures. IEEE Trans Power Electron 22(4):1321–1329CrossRefGoogle Scholar
  42. 42.
    Duong TH, Berning DW, Hefner AR, Smedley KM (2007) Longterm stability test system for high-voltage, high-frequency SiC power devices. IEEE Appl Power Electron Conf 2007:1240–1246Google Scholar
  43. 43.
    Agarwal A, Das M, Hull B, Krishnaswami S, Palmour J, Richmond J, Ryu SH, Zhang J (2006) Progress in silicon carbide power devices. In Proceedings 64th device research conference (DRC), 26–28 June 2006, Pennsylvania, USA, pp 155–158Google Scholar
  44. 44.
    Ali S, Wolfs P (2016) An improved four step commutation process for silicon carbide based matrix converters. 2016 Australasian universities power engineering conference (AUPEC), 25–28 Sept 2016 Brisbane, Australia, pp 1–5 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Central Queensland UniversityRockhamptonAustralia

Personalised recommendations