Development of HTS Cable-Based Transmission Systems for Renewables

  • Jian Xun JinEmail author
  • Md. Rabiul Islam
  • Abdul Goffar Khan
Part of the Renewable Energy Sources & Energy Storage book series (RESES)


High temperature superconducting (HTS) materials and technologies have become available to design and build HTS power cables, and the HTS cable characteristics have been well verified both in theory and in power transmission systems for practical applications. The HTS power cables, power networks and performances are described in detail to reveal the HTS cable technology and its trend. The necessary improvements required have been comprehensively identified to reach the goal of industrial and board application of HTS cables and transmission technologies which are potential critical elements for future power system renewables.


High temperature superconducting (HTS) cable HTS AC cable HTS DC cable HTS power transmission HTS smart grid HTS power cable design HTS cable characteristic analysis HTS power cable application HTS DC power transmission HTS fault current limiter HTS energy pipeline HTS wires HTS material characteristics HTS cable development trend Cold dielectric HTS cable Hot dielectric HTS cable Liquid nitrogen HTS energy pipeline Critical current density 



The authors would like to deliver their appreciations to Z. H. Chen, X. Y. Chen, X. Y. Xiao, C. S. Li, Y. Q. Xing for their assistance to this work.


  1. 1.
    Jin JX, Tang YJ, Xiao XY, Du BX, Wang QL, Wang JH, Wang SH, Bi YF, Zhu JG (2016) HTS power devices and systems: principles, characteristics, performance, and efficiency. IEEE Trans Appl Supercond 26(7):3800526Google Scholar
  2. 2.
    Jin JX, Xin Y, Wang QL, He YS, Cai CB, Wang YS, Wang ZM (2014) Enabling high-temperature superconducting technologies toward practical applications. IEEE Trans Appl Supercond 24(5):5400712CrossRefGoogle Scholar
  3. 3.
    Jin JX, Chen XY, Qu R, Fang HY, Xin Y (2015) An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids. Physica C (Amsterdam, Neth) 510:48–53CrossRefGoogle Scholar
  4. 4.
    Jin JX (2007) High efficient dc power transmission using high-temperature superconductors. Physica C 460–462:1443–1444CrossRefGoogle Scholar
  5. 5.
    Huang Q, Jin JX, Zhang JB (2006) Simulation study on performance of a long-distance superconducting DC power transmission system. Electr Power 39(3):45–49MathSciNetGoogle Scholar
  6. 6.
    Jin JX (2009) High temperature superconductors and their strong current applications. Metallurgical Industry Publishing House of China, BeijingGoogle Scholar
  7. 7.
    Xin Y, Hou B, Bi YF, Xi HX, Zhang Y, Ren AL, Yang XC, Han ZH, Wu ST, Ding HK (2005) Introduction of China’s first live grid installed HTS power cable system. IEEE Trans Appl Supercond 12(2):1814–1817CrossRefGoogle Scholar
  8. 8.
    Xin Y, Ren AL, Hong H, Li HH (2013) Superconducting power cable. China Electric Power Press, BeijingGoogle Scholar
  9. 9.
    Zong XH, Wei D, Han YW, Tang T (2016) Development of 35 kV 2000 A CD HTS cable demonstration project. IEEE Trans Appl Supercond 26(7):5403404Google Scholar
  10. 10.
    Grilli F et al (2014) Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Trans Appl Supercond 24(1):8200433Google Scholar
  11. 11.
    Dai S, Xiao L, Zhang H, Teng Y, Liang X, Song N, Cao Z, Zhu Z, Gao Z, Ma T, Zhang D, Zhang F, Zhang Z, Xu X, Lin L (2014) Testing and demonstration of a 10-kA HTS DC power cable. IEEE Trans Appl Supercond 24(2):5400104Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jian Xun Jin
    • 1
    Email author
  • Md. Rabiul Islam
    • 2
  • Abdul Goffar Khan
    • 2
  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.Rajshahi University of Engineering & TechnologyRajshahiBangladesh

Personalised recommendations