Skip to main content

Plant Growth-Promoting Microbes: Contribution to Stress Management in Plant Hosts

  • Chapter
  • First Online:

Abstract

Plants encounter various challenges that impact on growth and development. In the agricultural scenario, any limiting condition can transform into serious economic losses. Conventional methods employed to deal with biotic and abiotic stresses, including chemical methods, plant breeding, genetic engineering and other modern practices, present a variety of practical concerns. For example, transgenic plants can lead to selection pressure on the parasites thus providing a means to develop resistance. Hence a shift towards exploring the potentialities in plant growth-promoting microbes (PGPM) as a part of mainstream agricultural practices is imperative. In this review, we focus on PGPM (inclusive term for plant growth-promoting rhizobacteria and fungi), which, apart from their plant growth-promoting activities, also play a role in plant diseases control as well as in alleviating the impact of abiotic stresses. A deeper understanding of the mechanisms by which PGPM modify plant stress responses to boost their resistance and the nuances of the PGPM-host interactions would lead to increased acceptance of PGPM in agricultural applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akocak, P. B., Churey, J. J., & Worobo, R. W. (2015). Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Bioscience, 10, 48–58.

    Article  CAS  Google Scholar 

  • Alfano, G., Ivey, M. L. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., Kamoun, S., & Hoitink, H. A. J. (2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Biological Control, 97, 429–437.

    CAS  Google Scholar 

  • Alizadeh, O., Azarpanah, A., & Ariana, L. (2013). Induction and modulation of resistance in crop plants against disease by bioagent fungi (arbuscular mycorrhiza) and hormonal elicitors and plant growth promoting bacteria. International Journal of Farming and Allied Sciences, 2, 982–998.

    Google Scholar 

  • Amaresan, N., Kumar, K., Madhuri, K., & Usharani, G. K. (2016). Isolation and characterization of salt tolerant plant growth promoting rhizobacteria from plants grown in tsunami affected regions of Andaman and Nicobar Islands. Geomicrobiology, J36(20), 942–947.

    Article  CAS  Google Scholar 

  • Arora, R. (2004). Adaptations and responses of woody plants to environmental stresses (pp. 1–5). New York: IOS Press.

    Book  Google Scholar 

  • Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620.

    Article  Google Scholar 

  • Audenaert, K., De Meyer, G., & Höfte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 105, 513–517.

    Article  Google Scholar 

  • Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., & Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99, 141–149.

    Article  Google Scholar 

  • Balconi, C., Stevanato, P., Motto, M., & Biancardi, E. (2012). Breeding for biotic stress resistance/tolerance in plants. In M. Ashraf, M. Ozturk, M. S. A. Ahmad, & A. Aksoy (Eds.), Crop production for agricultural improvement (pp. 57–114). Springer.

    Google Scholar 

  • Barda, O., Shalev, O., Alster, S., Buxdorf, K., Gafni, A., & Levy, M. (2015). Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Disease, 99, 621–626.

    Article  CAS  Google Scholar 

  • Barka, E. A., Belarbi, A., Hachet, C., Nowak, J., & Audran, J. C. (2000). Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiology Letters, 186, 91–95.

    Article  CAS  Google Scholar 

  • Basja, N. (2013). The effect of agricultural practices on resident soil microbial communities: Focus on biocontrol and biofertilization. In B. FJD (Ed.), Molecular microbial ecology of the rhizosphere (pp. 687–700). Hoboken: Wiley Inc.

    Google Scholar 

  • Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultra structure and cytochemistry of the host response. Planta, 204, 153–168.

    Article  CAS  Google Scholar 

  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4, 343–350.

    Article  CAS  Google Scholar 

  • Bottini, R., Cassán, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497–503.

    Article  CAS  Google Scholar 

  • Boualem, A., Dogimont, C., & Bendahmane, A. (2015). The battle for survival between viruses and their host plants. Current Opinion in Virology, 17, 32–38.

    Article  CAS  Google Scholar 

  • Brooks, D. S., Gonzalez, C. F., Appel, D. N., & Filer, T. H. (1994). Evaluation of endophytic bacteria as potential biological-control agents for Oak Wilt. Biological Control, 4, 373–381.

    Article  Google Scholar 

  • Castillo, U., Strobel, G., Ford, E., Hess, W., Porter, H., Jensen, J., Albert, H., Robison, R., Condron, M., Teplow, D., Stevens, D., & Yaver, D. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148, 2675–2685.

    Article  CAS  Google Scholar 

  • Chandanie, W. A., Kubota, M., & Hyakumachi, M. (2006). Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil, 286, 209–217.

    Article  CAS  Google Scholar 

  • Chatterton, S., Sutton, J. C., & Boland, G. J. (2004). Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biological Control, 30, 360–373.

    Article  Google Scholar 

  • Chen, C., Bauske, E. M., Musson, G., Rodriguezkabana, R., & Kloepper, J. W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5, 83–91.

    Article  Google Scholar 

  • Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., & Junge, H. (2007). Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25, 1007–1014.

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 94951–94959.

    Google Scholar 

  • Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163–177.

    Article  Google Scholar 

  • Dalal, J., & Kulkarni, N. (2013). Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Current Research in Microbiology and Biotechnology, 1, 62–69.

    Google Scholar 

  • De Meyer, G., & Höfte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7 NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Biological Control, 87, 588–593.

    Google Scholar 

  • De Souza, R., Sant’Anna, F. H., Ambrosini, A., Tadra-Sfeir, M., Faoro, H., Pedrosa, F. O., Souza, E. M., & Passaglia, L. M. P. (2015). Genome of Pseudomonas sp. FeS53a, a putative plant growth- promoting bacterium associated with rice grown in iron-stressed soils. Genome Announcements, 3, 1–2.

    Google Scholar 

  • Domingo, J., & Bordonaba, J. G. (2011). A literature review on the safety assessment of genetically modified plants. Environment International, 37, 734–742.

    Article  Google Scholar 

  • Dong, Y., Zhang, X., Xu, J., & Zhang, L. (2004). Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Applied and Environmental Microbiology, 70, 2954–2960.

    Article  CAS  Google Scholar 

  • Downey, R. K. (2003). Ecological, genetic, and social factors affecting environmental assessment of transgenic plants. In B. Bodling (Ed.), Environmental effects of transgenic plants: The scope and adequacy of regulation (pp. 17–33). Washington, DC: National Academy Press.

    Google Scholar 

  • Duque, A. S., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Farinha, A. P., Santos, D., Fevereiro, P., & de Sousa Araújo, S. (2013). Abiotic stress responses in plants: Unravelling the complexity of genes and networks to survive. In K. Vahdati (Ed.), Abiotic stress-plant responses and applications in agriculture (pp. 3–23). Rijeka: InTech.

    Google Scholar 

  • Elbeshehy, E. K. F., Youssef, S. A., & Elazzazy, A. M. (2015). Resistance induction in pumpkin Cucurbita maxima L. against watermelon mosaic potyvirus by plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 25, 525–542.

    Article  Google Scholar 

  • Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T., & Huang, J. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research International, 22, 4907–4921.

    Article  Google Scholar 

  • Filippi, M. C. C., Silva, G. B., Silva-Lobo, V. L., Cortes, M. V. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.

    Article  Google Scholar 

  • Fridlender, M., Inbar, J., & Chet, I. (1993). Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25, 1211–1221.

    Article  CAS  Google Scholar 

  • Fröhlich, A., Buddrus-Schiemann, K., Durner, J., Hartmann, A., & von Rad, U. (2012). Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. Journal of Plant Interactions, 7, 1–9.

    Article  Google Scholar 

  • Gamalero, E., Berta, G., Massa, N., Glick, B. R., & Lingua, G. (2010). Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Journal of Applied Microbiology, 108, 236–245.

    Article  CAS  Google Scholar 

  • García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Journal, 2, 183–205.

    Article  Google Scholar 

  • Glandorf, C. M., Verheggen, P., Jansen, T., Jorritsma, J. W., Smit, E., Leeflang, P., Wernars, K., Thomashow, L. S., Laureijs, E., Thomas-Oates, J. E., Bakker, P., & Loon, L. C. V. (2001). Effect of genetically modified pseudomonas putida WCS358R on the fungal rhizosphere microflora of field-grown wheat. Applied and Environmental Microbiology, 67(8), 3371–3378.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, Article ID 963401, 15 pages.

    Google Scholar 

  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.

    Article  CAS  Google Scholar 

  • Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Tomiyama, C. A., Farmer, L., Dangl, J. L., & Grant, S. R. (2008). The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Molecular Plant-Microbe Interactions, 21, 361–370.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, S., Srinivas, V., Alekhya, G., Prakash, B., Kudapa, H., & Varshney, R. K. (2015). Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Organic Agriculture, 5, 123–133.

    Article  Google Scholar 

  • Grandlic CJ (2008) Plant growth-promoting bacteria suitable for the phytostabilization of mine tailings. Dissertation, The University of Arizona.

    Google Scholar 

  • Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society, B363, 543–555.

    Article  Google Scholar 

  • Horinouchi, H., Muslim, A., & Hyakumachi, M. (2010). Short communication biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti gf183. Journal of Plant Pathology, 92, 249–254.

    Google Scholar 

  • Hossain, M. M., Sultana, F., Miyazawa, M., & Hyakumachi, M. (2014). The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of Oleo Science, 63, 391–400.

    Article  CAS  Google Scholar 

  • Hossain, M. J., Ran, C., Liu, K., Ryu, C. M., Ivey, C. R., Williams, M. A., Hassan, M. K., Choi, S. K., Jeong, H., Newman, M., Kloepper, J. W., & Liles, M. R. (2015). Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Frontiers in Plant Science, 631(6), 1–14.

    Google Scholar 

  • Kamensky, M., Ovadis, M., Chet, I., & Chernin, L. (2003). Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry, 35, 323–331.

    Article  CAS  Google Scholar 

  • Kilic-Ekici, O., & Yuen, G. Y. (2004). Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. BiolControl, 30, 446–455.

    CAS  Google Scholar 

  • Killani, A. S., Abaidoo, R. C., Akintokun, A. K., & Abiala, M. A. (2011). Antagonistic effect of indigenous bacillus subtilis on root−/soil-borne fungal pathogens of cowpea. Research, 3, 11–18.

    Google Scholar 

  • Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., & Doke, N. (2001). Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: Lignification and superoxide generation. European Journal of Plant Pathology, 107, 523–533.

    Article  CAS  Google Scholar 

  • Liu, L., Kloepper, J. W., & Tuzun, S. (1995). Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology, 85, 695–698.

    Article  Google Scholar 

  • Malathi, S. (2015). Biological control of onion basal rot caused by Fusarium oxysporum f. sp. cepae. Asian Journal of Biological Sciences, 10, 21–26.

    Google Scholar 

  • Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A. F., El-Behairy, U. A., Sorlini, C., Cherif, A., Zocchi, G., & Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7, 1–14.

    Article  CAS  Google Scholar 

  • Mavrodi, O. V., Mavrodi, D. V., Weller, D. M., Linda, S., & Thomashow, L. S. (2006). Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Applied and Environmental Microbiology, 72(11), 7111–7122.

    Article  CAS  Google Scholar 

  • Muñoz, Z., Moret, A., & Garcés, S. (2008). The use of Verticillium dahliae and Diplodia scrobiculata to induce resistance in Pinus halepensis against Diplodia pinea infection. European Journal of Plant Pathology, 120, 331–337.

    Article  Google Scholar 

  • Murali, M., Amruthesh, K., Sudisha, J., & SNaH, S. (2012). Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. Journal of Phytology, 4, 30–36.

    Google Scholar 

  • Nagpure, A., Choudhary, B., Kumar, S., & Gupta, R. K. (2013). Isolation and characterization of chitinolytic Streptomyces sp. MT7 and its antagonism towards wood-rotting fungi. Annales de Microbiologie, 64, 531–541.

    Article  CAS  Google Scholar 

  • Nagpure, A., Choudhary, B., & Gupta, R. K. (2014). Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. Journal of Basic Microbiology, 54, 397–407.

    Article  CAS  Google Scholar 

  • Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9, e86882.

    Article  CAS  Google Scholar 

  • Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3, 1–7.

    Article  Google Scholar 

  • Ortbauer, M. (2013). Abiotic stress adaptation: Protein folding stability and dynamics. In V. Kourosh (Ed.), Abiotic stress – plant responses and applications in agriculture. Rijeka: InTech. https://doi.org/10.5772/53129.

    Chapter  Google Scholar 

  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(7), 1–12.

    Google Scholar 

  • Pontes, A. P., de Souza, R., Granada, C. E., & Passaglia, L. M. P. (2015). Screening of plant growth promoting bacteria associated with barley plants (Hordeum vulgare L.) cultivated in South Brazil. Biota Neotropica, 15, e20140105.

    Article  Google Scholar 

  • Porcel, R., Zamarreño, A. M., García-Mina, J. M., & Aroca, R. (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14, 36.

    Article  CAS  Google Scholar 

  • Rajkumar, M., & Helena, F. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.

    Article  CAS  Google Scholar 

  • Razinger, J., Lutz, M., Schroers, H. J., Urek, G., & Grunder, J. (2014). Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. Journal of Economic Entomology, 107, 1348–1354.

    Article  Google Scholar 

  • Rodriguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2007). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting rhizobacteria. Developments in Plant and Soil Sciences, 102, 15–21.

    Article  Google Scholar 

  • Ryu, C. M., Murphy, J. F., Mysore, K. S., & Kloepper, J. W. (2004). Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signalling pathway. The Plant Journal, 39, 381–392.

    Article  CAS  Google Scholar 

  • Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A., & Casas-Flores, S. (2011). The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. Journal of Microbiology and Biotechnology, 21, 686–696.

    Article  Google Scholar 

  • Salas-Marina, M. A., Isordia-Jasso, M. I., Islas-Osuna, M. A., Delgado-Sánchez, P., Jiménez-Bremont, J. F., Rodríguez-Kessler, M., Rosales-Saavedra, M. T., Herrera-Estrella, A., & Casas-Flores, S. (2015). The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science, 6(77), 1–13.

    Google Scholar 

  • Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99.

    Article  CAS  Google Scholar 

  • Sarathambal, C., Ilamurugu, K., Priya, L. S., & Barman, K. K. (2014). A review on weeds as source of novel plant growth promoting microbes for crop improvement. Journal of Applied and Natural Sciences, 6, 880–886.

    Article  Google Scholar 

  • Schuler, T. H., Poppy, G. M., Kerry, B. R., & Denholm, I. (1999). Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends in Biotechnology, 17, 210–216.

    Article  CAS  Google Scholar 

  • Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., DeMason, D. A., & Hirsch, A. M. (2013). Bacillus simplex-A little known PGPB with anti-fungal activity alters pea-legume root architecture and nodule morphology when co-inoculated with Rhizobium leguminosarum bv. viciae. Agronomy, 3, 595–620.

    Article  Google Scholar 

  • Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    Article  CAS  Google Scholar 

  • Shivanna, M. B., Meera, M. S., & Hyakumachi, M. (1996). Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection, 15, 497–504.

    Article  Google Scholar 

  • Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of jasmonic acid/ethylene signalling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.

    Article  CAS  Google Scholar 

  • Siddiqui, I. A., & Shaukat, S. S. (2002). Rhizobacteria-mediated induction of systemic resistance in tomato against Meloidogyne javanica. Journal of Phytopathology, 150, 469–472.

    Article  Google Scholar 

  • Silva, D. C. S., Weatherhead, E. K., Knox, J. W., & Rodriguez-Diaz, J. A. (2007). Predicting the impacts of climate change- a case study of paddy irrigation water requirements in Sri Lanka. Agricultural Water Management, 93, 19–29.

    Article  Google Scholar 

  • Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.

    Article  CAS  Google Scholar 

  • Sivakumar, G., & Sharma, R. C. (2003). Induced biochemical changes due to seed bacterization by Pseudomonas fluorescens in maize plants. Indian Phytopathology, 56, 134–137.

    CAS  Google Scholar 

  • Spoel, S., & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host & Microbe, 3, 348–351.

    Article  CAS  Google Scholar 

  • Sripontan, Y., Hung, M., Young, C., & Hwang, S. (2014). Effects of soil type and plant growth promoting microorganism on cabbage and Spodoptera litura performance. Journal of Agriculture and Forestry, 63, 153–161.

    Google Scholar 

  • Timmusk, S., & Wagner, E. (1999). The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Phytopathology, 12, 951–959.

    CAS  Google Scholar 

  • Tiwari, P. K., & Thrimurthy, V. S. (2007). Isolation and characterization of the Pseudomonas fluorescens from rhizosphere of different crops. Journal of Mycology and Plant Pathology, 37, 231–234.

    Google Scholar 

  • Umashankari, J., & Sekar, C. (2011). Comparative evaluation of different bio-formulations of PGPR cells on the enhancement of induced systemic resistance (ISR) in rice P. oryzae pathosystem under upland condition. Current Botany, 2, 12–17.

    CAS  Google Scholar 

  • Van Loon, L. C. (2007). Plant responses to plant growth promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.

    Article  CAS  Google Scholar 

  • Viets, F. G., & Lunin, J. (2009). The environmental impact of fertilizers. Critical Reviews in Environmental Control, 5, 423–453.

    Article  Google Scholar 

  • Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16, 400–412.

    Article  Google Scholar 

  • Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 10754–10773.

    Article  CAS  Google Scholar 

  • Yadav, J., Verma, J. P., & Tiwari, K. N. (2011). Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 4, 291–299.

    Article  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.

    CAS  Google Scholar 

  • Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25, 139–150.

    Article  CAS  Google Scholar 

  • Zhou, Z., Zhang, C., Zhou, W., Li, W., Chu, L., Yan, J., & Li, H. (2014). Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. Journal of Plant Interactions, 9, 585–591.

    Article  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33, 406–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Sundari Sattiraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sattiraju, K.S., Kotiyal, S., Arora, A., Maheshwari, M. (2019). Plant Growth-Promoting Microbes: Contribution to Stress Management in Plant Hosts. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_8

Download citation

Publish with us

Policies and ethics