Skip to main content

Environmental Health Hazards of Post-Methanated Distillery Effluent and Its Biodegradation and Decolorization

  • Chapter
  • First Online:

Abstract

Anaerobically digested distillery effluent is a mixture of complex organic and inorganic pollutants which is composed of several plant sterols which do not only affect the water quality but also aquatic flora and fauna. Research has revealed the adverse effects of post-methanated distillery effluent (PMDE) on the seed germination and plant growth of Phaseolus mungo even at lower concentrations. Studies have also showed the adverse effect on soil fertility by inhibiting the nitrogen-fixing bacteria and root nodulation. The major colorant of distillery effluent is melanoidin, reaction product of amino-carbonyl compounds at elevated temperature in the sugar industries and distilleries due to condensation reaction. Due to its high solubility in aquatic ecosystem and negative charge, it makes complexation with all the humic substances and heavy metals in the environment. Therefore, the decolorization and degradation of PMDE is still a global challenge due to its complexity. The physical, chemical, and biological techniques have been attempted for its detoxification and color removal but still warranted for its feasible application. Manganese peroxidase (MnP) and laccase have been reported as key enzymes from fungi and bacteria. During the degradation process of PMDE, different metabolic products through GC-MS/MS analysis have also been characterized. The integration of bacterial treatment with constructed wetland plant treatment (Phragmites communis, Typha angustifolia, and Cyperus esculentus) technique has been reported recently as an effective approach for decolorization and degradation of PMDE. The major challenge of PMDE biodegradation and decolorization is its high total dissolved solids (TDS) containing complex organic pollutants including heavy metals. The high TDS is a result of precipitation of metal sulfides during anaerobic digestion of distillery spentwash due to complexation of heavy metals and sulfates which impose inhibitory effects on the microorganisms, consequently inhibiting the biodegradation process. Several complex organic pollutants present in PMDE have been also reported as endocrine-disrupting chemicals (EDCs) which directly affect the aquatic and terrestrial ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bharagava, R. N., & Chandra, R. (2010). Biodegradation of the major colour containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation, 21, 703–711.

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Chandra, R., & Singh, S. K. (2006). Elucidation of chemical structure of phenolic compounds by H1NMR and GC-mass spectrometry present in anaerobically digested distillery effluent. Indian Journal of Environmental Protection, 26(11), 1015–1018.

    CAS  Google Scholar 

  • Bharagava, R. N., Chandra, R., & Rai, V. (2008). Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresource Technology, 99, 8316–8324.

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Chandra, R., & Rai, V. (2009). Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World Journal of Microbiology and Biotechnology, 25, 737–744.

    Article  CAS  Google Scholar 

  • Billore, S. K., Singh, N., Ram, H. K., et al. (2001). Treatment of a molasses based distillery effluent in a constructed wetland in central India. Water Science and Technology, 44, 441–448.

    Article  CAS  Google Scholar 

  • Borja, R., Martin, A., Maestro, R., et al. (1993). Enhancement of the anaerobic digestion of wine distillery wastewater by the removal of phenolic inhibitors. Bioresource Technology, 45(2), 99–104.

    Article  CAS  Google Scholar 

  • Camarero, S., Bocchini, P., Galletti, G. C., et al. (1999). Pyrolysis-gas chromatography/mass spectrometry analysis of phenolic and etherified units in natural and industrial lignins. Rapid Communications in Mass Spectrometry, 13, 630–636.

    Article  CAS  Google Scholar 

  • Cammerer, B., & Kroh, L. W. (1995). Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chemistry, 53, 55–59.

    Article  Google Scholar 

  • Chandra, R., & Sangeeta, Y. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites communis, Typha angustifolia and Cyperus esculentus. International Journal of Phytoremediation, 13, 580–591.

    Article  CAS  Google Scholar 

  • Chandra, R., & Srivastava, A. (2004). Toxicological evaluation of bacteria decolourised anaerobically treated distillery effluent with common duckweed (Lemna minor). Journal of Environmental Biology, 25, 93–98.

    Google Scholar 

  • Chandra, R., Kumar, K., & Singh, J. (2004). Impact of anaerobically treated and untreated (raw) distillery effluent irrigation on soil microflora, growth, total chlorophyll and protein contents of Phaseolus aureus L. Journal of Environmental Biology, 25(4), 381–385.

    Google Scholar 

  • Chandra, R., Raj, A., Purohit, H. J., et al. (2007). Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67, 839–846.

    Article  CAS  Google Scholar 

  • Chandra, R., Bharagava, R. N., & Rai, V. (2008a). Melanoidins as major colorant in sugarcane molasses based distillery wastewater and its degradation. Bioresource Technology, 99, 4648–4660.

    Article  CAS  Google Scholar 

  • Chandra, R., Yadav, S., & Mohan, D. (2008b). Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). Journal of Hazardous Materials, 152, 431–439.

    Article  CAS  Google Scholar 

  • Chandra, R., Sangeeta, Y., Bharagava, R. N., et al. (2008c). Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L. Journal of Environmental Management, 88, 1016–1024.

    Article  CAS  Google Scholar 

  • Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162, 1514–1521.

    Article  CAS  Google Scholar 

  • Chen, T. Y., Kao, C. M., Yeh, T. Y., et al. (2006). Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere, 64, 497–502.

    Article  CAS  Google Scholar 

  • D’Souza, D. T., Tiwari, R., Sah, A. K., et al. (2006). Enhanced production of laccase by a marine fungus during treatment of coloured effluents and synthetic dyes. Enzyme and Microbial Technology, 38, 504–511.

    Article  Google Scholar 

  • Dahiya, J., Singh, D., & Nigam, P. (2001). Decolourisation of molasses wastewater by cells of Pseudomonas fluorescens immobilized on porous cellulose carrier. Bioresource Technology, 78, 111–114.

    Article  CAS  Google Scholar 

  • Dehorter, B., & Blondeau, R. (1993). Isolation of an extracellular Mn dependent enzyme mineralizing melanoidins from the white rot fungus Trametes versicolour. FEMS Microbiology Letters, 109, 117–122.

    Article  CAS  Google Scholar 

  • Environment (Protection) Amendment Rules. (2008). On waste water generation standards Substituted by Rule 2(ii) (a) of the notified by G.S.R.186 (E), dated 18 Mar 2008.

    Google Scholar 

  • Eusibio, A., Petruccioli, M., Lageiro, M., et al. (2004). Microbial characterization of activated sludge in jet-loop bioreactors treating winery wastewater. Journal of Industrial Microbiology and Biotechnology, 31, 29–34.

    Article  Google Scholar 

  • Ghosh, M., Ganguli, A., & Tripathi, A. K. (2002). Treatment of anaerobically digested distillery spentwash in a two-stage bioreactor using Pseudomonas putida and Aeromonas sp. Process Biochemistry, 37, 857–862.

    Article  CAS  Google Scholar 

  • Ghosh, M., Verma, S. C., Mengoni, A., et al. (2004). Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spentwash. Journal of Applied Microbiology, 96, 1278–1286.

    Article  CAS  Google Scholar 

  • Gonzalez, T., Terron, M. C., Yague, S., et al. (2000). Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Communications in Mass Spectrometry, 14, 1417–1424.

    Article  CAS  Google Scholar 

  • Hati, K. M., Biswas, A. K., Bandyopadhyay, K. K., et al. (2007). Soil properties and crop yields on a vertisol in India with application of distillery effluent. Soil and Tillage Research, 92, 60–68.

    Article  Google Scholar 

  • Hodge, J. E. (1953). Chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1, 928–943.

    Article  CAS  Google Scholar 

  • Hofmann, T. (1998). Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde-chemical characterisation of a red coloured domaine. European Food Research and Technology, 206, 251–258.

    CAS  Google Scholar 

  • Jain, N., Minocha, A. K., & Verma, C. L. (2002). Degradation of predigested distillery effluent by isolated bacterial strains. Indian Journal of Experimental Biology, 40, 101–105.

    Google Scholar 

  • Jain, N., Bhatia, A., Kausik, R., et al. (2005). Impact of post methanation distillery effluent irrigation on ground water quality. Environmental Monitoring and Assessment, 110, 243–255.

    Article  CAS  Google Scholar 

  • Jones, A. D., Tier, C. M., & Wilkins, J. P. G. (1998). Analysis of the Maillard reaction products of b-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry. Journal of Chromatography, 822, 147–154.

    Article  CAS  Google Scholar 

  • Kalavathi, D. F., Uma, L., & Subramanian, G. (2001). Degradation and metabolization of the pigment-melanoidin in distillery effluent by marine cyanobacterium Oscillatoria boryana BDU. Enzyme and Microbial Technology, 29, 246–251.

    Article  Google Scholar 

  • Kambe, T. N., Shimomura, M., Nomura, N., et al. (1999). Decolourization of molasses wastewater by Bacillus sp. under thermophilic and anaerobic conditions. Journal of Bioscience and Bioengineering, 87, 119–121.

    Article  Google Scholar 

  • Kandarakis, E. D., Bourguignon, J. P., Giudice, L. C., et al. (2009). Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocrine Reviews, 30(4), 293–342.

    Article  Google Scholar 

  • Kaushik, A., Nisha, R., Jagjeeta, K., et al. (2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Bioresource Technology, 96, 1860–1866.

    Article  CAS  Google Scholar 

  • Khairnar, P., Chavan, F., & Diware, V. R. (2013). Generation of energy from distillery waste water. Pratibha: International Journal of Science, Spirituality, Business and Technology, 2(1), 29–35.

    Google Scholar 

  • Kowalska, A., Bodzek, M., & Bohdziewicz, J. (1998). Biodegradation of phenols and cyanides with immobilized microorganisms. Process Biochemistry, 33, 189–197.

    Article  CAS  Google Scholar 

  • Krishnanand, Y., Maillacheruvu, G. F. P., et al. (1993). Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Environment Research, 65(2), 100–109.

    Article  Google Scholar 

  • Kumar, P., & Chandra, R. (2004). Detoxification of distillery effluent through Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential of Spirodela polyrrhiza (L.) Schliden. Bulletin of Environmental Contamination and Toxicology, 73, 903–910.

    Article  CAS  Google Scholar 

  • Kumar, S., & Viswanathan, L. (1991). Production of biomass, carbon dioxide, volatile acids, and their interrelationship with decrease in chemical oxygen demand, during distillery waste treatment by bacterial strains. Enzyme and Microbial Technology, 13, 179–186.

    Article  CAS  Google Scholar 

  • Lee, C. M., Chichester, C., & Lee, T. C. (1977). Physiological consequences of browned food products. Proceedings of the IVth international congress of food science and technology.

    Google Scholar 

  • Lee, T. H., Aoki, H., Sugano, Y., et al. (2000). Effect of molasses on the production and activity of dye-decolourizing peroxidase from Geotrichum candidum Dec 1. Journal of Bioscience and Bioengineering, 89, 545–549.

    Article  CAS  Google Scholar 

  • Mansur, M., Suarez, T., Fernandez-Larrea, J., et al. (1997). Identification of a Laccase gene family in the new lignindegrading basidiomycete CECT 20197. Applied and Environmental Microbiology, 63, 2637–2646.

    CAS  Google Scholar 

  • McCartney, D. M., & Oleszkiewicz, J. A. (1991). Competition between methanogens and sulfate reducers: Effect of COD: Sulfate ratio and acclimation. Water Environment Research, 65(5), 655–664.

    Article  Google Scholar 

  • Miyata, N., Iwahori, K., & Fujita, M. (1998). Manganese independent and dependent decolourisation of melanoidin by extracellular hydrogen peroxide and peroxidases from Coriolus hirsutus pellets. Journal of Fermentation and Bioengineering, 85, 550–553.

    Article  CAS  Google Scholar 

  • Mohana, S., Desai, C., & Madamwar, D. (2007). Biodegradation and decolourization of anaerobically treated distillery spentwash by a novel bacterial consortium. Bioresource Technology, 98, 333–339.

    Article  CAS  Google Scholar 

  • Ohmomo, S., Itoh, N., Wantanabe, Y., et al. (1985). Continuous decolorization of molasses wastewater with mycelia of Coriolus versicolor Ps4a. Agricultural and Biological Chemistry, 49, 2551–2555.

    CAS  Google Scholar 

  • Ohmomo, S., Daengsabha, W., Yoshikawa, H., et al. (1988). Screening of anaerobic bacteria with the ability to decolourize molasses melanoidin. Agricultural and Biological Chemistry, 57, 2429–2435.

    Google Scholar 

  • Panicker, S., Singh, A., & Agnihotri, S. (2015). Decolorization of biomethanated distillery effluent by immobilized enzymes. International Journal of Bioassays, 4(11), 4518–4522.

    Google Scholar 

  • Patel, A., Pawar, P., Mishra, S., et al. (2001). Exploitation of marine cyanobacteria for removal of colour from distillery effluent. Indian Journal of Environmental Protection, 21, 1118–1121.

    CAS  Google Scholar 

  • Petruccioli, M., Duarte, J. C., Eusibio, A., et al. (2002). Aerobic treatment of winery wastewater using a jet –loop activated sludge reactor. Process Biochemistry, 37, 821–829.

    Article  CAS  Google Scholar 

  • Ramakritinan, C. M., Kumaraguru, A. K., & Balasubramanian, M. P. (2005). Impact of distillery effluent on carbohydrate metabolism of freshwater fish, Cyprinus carpio. Ecotoxicology, 14, 693–707.

    Article  CAS  Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., et al. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and ground water-A case study. Agriculture, Ecosystems and Environment, 109, 310–322.

    Article  CAS  Google Scholar 

  • Sangave, P. C., & Pandit, A. B. (2006a). Enhancement in biodegradability of distillery wastewater using enzymatic pretreatment. Journal of Environmental Management, 78, 77–85.

    Article  CAS  Google Scholar 

  • Sangave, P. C., & Pandit, A. B. (2006b). Ultrasound and enzyme assisted biodegradation of distillery wastewater. Journal of Environmental Management, 80, 36–46.

    Article  CAS  Google Scholar 

  • Sangeeta, Y., & Chandra, R. (2006). Effect of post methanated distillery effluent on various morphological, physiological and biochemical parameters of Vicia fabae after two step biological treatment. Presented in 26th annual session of the academy of environmental biology (pp. 40–41).

    Google Scholar 

  • Sangeeta, Y., & Chandra, R. (2011). Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environment and Earth Science, 62, 1235–1243.

    Article  Google Scholar 

  • Sangeeta, Y., & Chandra, R. (2012). Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spentwash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation, 23(4), 609–620.

    Article  Google Scholar 

  • Sangeeta, Y., & Chandra, R. (2013). Effect of pH on melanoidin extraction from post methanated distillery effluent (PMDE) and its decolorization by potential bacterial consortium. International Journal of Recent Scientific Research, 4(10), 1492–1496.

    Google Scholar 

  • Sangeeta, Y., Chandra, R., & Vibhuti, R. (2011). Characterization of potential MnP producing bacteria and its metabolic products during decolourisation of synthetic melanoidins due to biostimulatory effect of d-xylose at stationary phase. Process Biochemistry, 46, 1774–1784.

    Article  Google Scholar 

  • Shen, S. C., Tseng, K. C., & Wu, J. S. B. (2007). An analysis of Maillard reaction products in ethanolic glucose-glycine solution. Food Chemistry, 102, 281–287.

    Article  CAS  Google Scholar 

  • Silvan, J. M., Lagemaat, J. V. D., Olano, A., et al. (2006). Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. Journal of Pharmaceutical and Biomedical Analysis, 41, 1543–1551.

    Article  CAS  Google Scholar 

  • Singh, N. K., Pandey, G. C., Rai, U. N., et al. (2005). Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bulletin of Environmental Contamination and Toxicology, 74, 857–863.

    Article  CAS  Google Scholar 

  • Sirianuntapiboon, S., Phothilangka, P., & Ohmomo, S. (2004). Decolourisation of molasses wastewater by a strain no. BP 103 of acetogenic bacteria. Bioresource Technology, 92, 31–39.

    Article  CAS  Google Scholar 

  • Subramani, A., Saravanan, S., Tamizhiniyan, P., et al. (1997). Influence of heavy metals on germination and early seedling growth of Vigna mungo L. Pollution Research, 16(1), 29–31.

    Google Scholar 

  • TEDX. (2011). The Endocrine Disruption Exchange, Inc. (TEDX), a 501(c)(3) organization, is based in Paonia, Colorado, and is incorporated as a business under the laws of that state.

    Google Scholar 

  • Tressl, R., & Wondrak, G. T. (1998). New melanoidin like Maillard polymer from 2-deoxypentoses. Journal of Agricultural and Food Chemistry, 46, 104–110.

    Article  CAS  Google Scholar 

  • Trivedy, R. K., & Nakate, S. S. (2000). Treatment of diluted distillery waste by constructed wetlands. Indian Journal of Environmental Protection, 20, 749–753.

    CAS  Google Scholar 

  • Valderrama, L. T., Del Campo, C. M., Rodriguez, C. M., et al. (2002). Treatment of recalcitrant wastewater from ethanol and citric acid using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Research, 36, 4185–4192.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology, Government of India, for the financial assistance to project vide letter no BT/PR13922/BCE/8/1129/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Chandra, R. (2019). Environmental Health Hazards of Post-Methanated Distillery Effluent and Its Biodegradation and Decolorization. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_4

Download citation

Publish with us

Policies and ethics